File size: 11,451 Bytes
51daf1f 2fab931 51daf1f cdc7e6e 51daf1f cdc7e6e 51daf1f cdc7e6e 51daf1f cdc7e6e 51daf1f cdc7e6e 51daf1f feb68a2 51daf1f feb68a2 51daf1f cdc7e6e 51daf1f 04c4b2d 51daf1f cdc7e6e 51daf1f cdc7e6e 51daf1f cdc7e6e 51daf1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
---
license: llama3.1
language:
- en
- de
- fr
- it
- pt
- hi
- es
- th
library_name: transformers
pipeline_tag: text-generation
tags:
- llama-3.1
- meta
- autogptq
---
> [!IMPORTANT]
> This repository is a community-driven quantized version of the original model [`meta-llama/Meta-Llama-3.1-405B-Instruct`](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct) which is the FP16 half-precision official version released by Meta AI.
## Model Information
The Meta Llama 3.1 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction tuned generative models in 8B, 70B and 405B sizes (text in/text out). The Llama 3.1 instruction tuned text only models (8B, 70B, 405B) are optimized for multilingual dialogue use cases and outperform many of the available open source and closed chat models on common industry benchmarks.
This repository contains [`meta-llama/Meta-Llama-3.1-405B-Instruct`](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct) quantized using [AutoGPTQ](https://github.com/AutoGPTQ/AutoGPTQ) from FP16 down to INT4 using the GPTQ kernels performing zero-point quantization with a group size of 128.
## Model Usage
> [!NOTE]
> In order to run the inference with Llama 3.1 405B Instruct GPTQ in INT4, around 203 GiB of VRAM are needed only for loading the model checkpoint, without including the KV cache or the CUDA graphs, meaning that there should be a bit over that VRAM available.
In order to use the current quantized model, support is offered for different solutions as `transformers`, `autogptq`, or `text-generation-inference`.
### 🤗 transformers
In order to run the inference with Llama 3.1 405B Instruct GPTQ in INT4, you need to install the following packages:
```bash
pip install -q --upgrade transformers accelerate optimum
pip install -q --no-build-isolation auto-gptq
```
To run the inference on top of Llama 3.1 405B Instruct GPTQ in INT4 precision, the GPTQ model can be instantiated as any other causal language modeling model via `AutoModelForCausalLM` and run the inference normally.
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "hugging-quants/Meta-Llama-3.1-405B-Instruct-GPTQ-INT4"
prompt = [
{"role": "system", "content": "You are a helpful assistant, that responds as a pirate."},
{"role": "user", "content": "What's Deep Learning?"},
]
tokenizer = AutoTokenizer.from_pretrained(model_id)
inputs = tokenizer.apply_chat_template(
prompt,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt",
return_dict=True,
).to("cuda")
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
device_map="auto",
)
outputs = model.generate(**inputs, do_sample=True, max_new_tokens=256)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
```
### AutoGPTQ
In order to run the inference with Llama 3.1 405B Instruct GPTQ in INT4, you need to install the following packages:
```bash
pip install -q --upgrade transformers accelerate optimum
pip install -q --no-build-isolation auto-gptq
```
Alternatively, one may want to run that via `AutoGPTQ` even though it's built on top of 🤗 `transformers`, which is the recommended approach instead as described above.
```python
import torch
from auto_gptq import AutoGPTQForCausalLM
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "hugging-quants/Meta-Llama-3.1-405B-Instruct-GPTQ-INT4"
prompt = [
{"role": "system", "content": "You are a helpful assistant, that responds as a pirate."},
{"role": "user", "content": "What's Deep Learning?"},
]
tokenizer = AutoTokenizer.from_pretrained(model_id)
inputs = tokenizer.apply_chat_template(
prompt,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt",
return_dict=True,
).to("cuda")
model = AutoGPTQForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
device_map="auto",
)
outputs = model.generate(**inputs, do_sample=True, max_new_tokens=256)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
```
The AutoGPTQ script has been adapted from [`AutoGPTQ/examples/quantization/basic_usage.py`](https://github.com/AutoGPTQ/AutoGPTQ/blob/main/examples/quantization/basic_usage.py).
### 🤗 Text Generation Inference (TGI)
To run the `text-generation-launcher` with Llama 3.1 405B Instruct GPTQ in INT4 with Marlin kernels for optimized inference speed, you will need to have Docker installed (see [installation notes](https://docs.docker.com/engine/install/)) and the `huggingface_hub` Python package as you need to login to the Hugging Face Hub.
```bash
pip install -q --upgrade huggingface_hub
huggingface-cli login
```
Then you just need to run the TGI v2.2.0 (or higher) Docker container as follows:
```bash
docker run --gpus all --shm-size 1g -ti -p 8080:80 \
-v hf_cache:/data \
-e MODEL_ID=hugging-quants/Meta-Llama-3.1-405B-Instruct-GPTQ-INT4 \
-e NUM_SHARD=8 \
-e QUANTIZE=gptq \
-e HF_TOKEN=$(cat ~/.cache/huggingface/token) \
-e MAX_INPUT_LENGTH=4000 \
-e MAX_TOTAL_TOKENS=4096 \
ghcr.io/huggingface/text-generation-inference:2.2.0
```
> [!NOTE]
> TGI will expose different endpoints, to see all the endpoints available check [TGI OpenAPI Specification](https://huggingface.github.io/text-generation-inference/#/).
To send request to the deployed TGI endpoint compatible with [OpenAI OpenAPI specification](https://github.com/openai/openai-openapi) i.e. `/v1/chat/completions`:
```bash
curl 0.0.0.0:8080/v1/chat/completions \
-X POST \
-H 'Content-Type: application/json' \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is Deep Learning?"
}
],
"max_tokens": 128
}'
```
Or programatically via the `huggingface_hub` Python client as follows:
```python
import os
from huggingface_hub import InferenceClient
client = InferenceClient(base_url="http://0.0.0.0:8080", api_key=os.getenv("HF_TOKEN", "-"))
chat_completion = client.chat.completions.create(
model="hugging-quants/Meta-Llama-3.1-405B-Instruct-GPTQ-INT4",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "What is Deep Learning?"},
],
max_tokens=128,
)
```
Alternatively, the OpenAI Python client can also be used (see [installation notes](https://github.com/openai/openai-python?tab=readme-ov-file#installation)) as follows:
```python
import os
from openai import OpenAI
client = OpenAI(base_url="http://0.0.0.0:8080/v1", api_key=os.getenv("OPENAI_API_KEY", "-"))
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "What is Deep Learning?"},
],
max_tokens=128,
)
```
### vLLM
To run vLLM with Llama 3.1 405B Instruct GPTQ in INT4, you will need to have Docker installed (see [installation notes](https://docs.docker.com/engine/install/)) and run the latest vLLM Docker container as follows:
```bash
docker run --runtime nvidia --gpus all --ipc=host -p 8000:8000 \
-v hf_cache:/root/.cache/huggingface \
vllm/vllm-openai:latest \
--model hugging-quants/Meta-Llama-3.1-405B-Instruct-GPTQ-INT4 \
--quantization gptq_marlin \
--tensor-parallel-size 8 \
--max-model-len 4096
```
To send request to the deployed vLLM endpoint compatible with [OpenAI OpenAPI specification](https://github.com/openai/openai-openapi) i.e. `/v1/chat/completions`:
```bash
curl 0.0.0.0:8000/v1/chat/completions \
-X POST \
-H 'Content-Type: application/json' \
-d '{
"model": "hugging-quants/Meta-Llama-3.1-405B-Instruct-GPTQ-INT4",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is Deep Learning?"
}
],
"max_tokens": 128
}'
```
Or programatically via the `openai` Python client (see [installation notes](https://github.com/openai/openai-python?tab=readme-ov-file#installation)) as follows:
```python
import os
from openai import OpenAI
client = OpenAI(base_url="http://0.0.0.0:8000/v1", api_key=os.getenv("VLLM_API_KEY", "-"))
chat_completion = client.chat.completions.create(
model="hugging-quants/Meta-Llama-3.1-405B-Instruct-GPTQ-INT4",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "What is Deep Learning?"},
],
max_tokens=128,
)
```
## Quantization Reproduction
> [!NOTE]
> In order to quantize Llama 3.1 405B Instruct using AutoGPTQ, you will need to use an instance with at least enough CPU RAM to fit the whole model i.e. ~800GiB, and an NVIDIA GPU with 80GiB of VRAM to quantize it.
In order to quantize Llama 3.1 405B Instruct with GPTQ in INT4, you need to install the following packages:
```bash
pip install -q --upgrade transformers accelerate optimum
pip install -q --no-build-isolation auto-gptq
```
Then run the following script, adapted from [`AutoGPTQ/examples/quantization/basic_usage.py`](https://github.com/AutoGPTQ/AutoGPTQ/blob/main/examples/quantization/basic_usage.py).
```python
import random
import numpy as np
import torch
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
from datasets import load_dataset
from transformers import AutoTokenizer
pretrained_model_dir = "meta-llama/Meta-Llama-3.1-405B-Instruct"
quantized_model_dir = "meta-llama/Meta-Llama-3.1-405B-Instruct-GPTQ-INT4"
print("Loading tokenizer, dataset, and tokenizing the dataset...")
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True)
dataset = load_dataset("Salesforce/wikitext", "wikitext-2-raw-v1", split="train")
encodings = tokenizer("\n\n".join(dataset["text"]), return_tensors="pt")
print("Setting random seeds...")
random.seed(0)
np.random.seed(0)
torch.random.manual_seed(0)
print("Setting calibration samples...")
nsamples = 128
seqlen = 2048
calibration_samples = []
for _ in range(nsamples):
i = random.randint(0, encodings.input_ids.shape[1] - seqlen - 1)
j = i + seqlen
input_ids = encodings.input_ids[:, i:j]
attention_mask = torch.ones_like(input_ids)
calibration_samples.append({"input_ids": input_ids, "attention_mask": attention_mask})
quantize_config = BaseQuantizeConfig(
bits=4, # quantize model to 4-bit
group_size=128, # it is recommended to set the value to 128
desc_act=True, # set to False can significantly speed up inference but the perplexity may slightly bad
sym=True, # using symmetric quantization so that the range is symmetric allowing the value 0 to be precisely represented (can provide speedups)
damp_percent=0.1, # see https://github.com/AutoGPTQ/AutoGPTQ/issues/196
)
# load un-quantized model, by default, the model will always be loaded into CPU memory
print("Load unquantized model...")
model = AutoGPTQForCausalLM.from_pretrained(pretrained_model_dir, quantize_config)
# quantize model, the examples should be list of dict whose keys can only be "input_ids" and "attention_mask"
print("Quantize model with calibration samples...")
model.quantize(calibration_samples)
# save quantized model using safetensors
model.save_quantized(quantized_model_dir, use_safetensors=True)
``` |