File size: 9,003 Bytes
6825fc9 9cd3cc5 6825fc9 9cd3cc5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
---
language: code
thumbnail: https://cdn-media.huggingface.co/CodeBERTa/CodeBERTa.png
datasets:
- code_search_net
license: apache-2.0
---
# CodeBERTa-language-id: The World’s fanciest programming language identification algo 🤯
To demonstrate the usefulness of our CodeBERTa pretrained model on downstream tasks beyond language modeling, we fine-tune the [`CodeBERTa-small-v1`](https://huggingface.co/huggingface/CodeBERTa-small-v1) checkpoint on the task of classifying a sample of code into the programming language it's written in (*programming language identification*).
We add a sequence classification head on top of the model.
On the evaluation dataset, we attain an eval accuracy and F1 > 0.999 which is not surprising given that the task of language identification is relatively easy (see an intuition why, below).
## Quick start: using the raw model
```python
CODEBERTA_LANGUAGE_ID = "huggingface/CodeBERTa-language-id"
tokenizer = RobertaTokenizer.from_pretrained(CODEBERTA_LANGUAGE_ID)
model = RobertaForSequenceClassification.from_pretrained(CODEBERTA_LANGUAGE_ID)
input_ids = tokenizer.encode(CODE_TO_IDENTIFY)
logits = model(input_ids)[0]
language_idx = logits.argmax() # index for the resulting label
```
## Quick start: using Pipelines 💪
```python
from transformers import TextClassificationPipeline
pipeline = TextClassificationPipeline(
model=RobertaForSequenceClassification.from_pretrained(CODEBERTA_LANGUAGE_ID),
tokenizer=RobertaTokenizer.from_pretrained(CODEBERTA_LANGUAGE_ID)
)
pipeline(CODE_TO_IDENTIFY)
```
Let's start with something very easy:
```python
pipeline("""
def f(x):
return x**2
""")
# [{'label': 'python', 'score': 0.9999965}]
```
Now let's probe shorter code samples:
```python
pipeline("const foo = 'bar'")
# [{'label': 'javascript', 'score': 0.9977546}]
```
What if I remove the `const` token from the assignment?
```python
pipeline("foo = 'bar'")
# [{'label': 'javascript', 'score': 0.7176245}]
```
For some reason, this is still statistically detected as JS code, even though it's also valid Python code. However, if we slightly tweak it:
```python
pipeline("foo = u'bar'")
# [{'label': 'python', 'score': 0.7638422}]
```
This is now detected as Python (Notice the `u` string modifier).
Okay, enough with the JS and Python domination already! Let's try fancier languages:
```python
pipeline("echo $FOO")
# [{'label': 'php', 'score': 0.9995257}]
```
(Yes, I used the word "fancy" to describe PHP 😅)
```python
pipeline("outcome := rand.Intn(6) + 1")
# [{'label': 'go', 'score': 0.9936151}]
```
Why is the problem of language identification so easy (with the correct toolkit)? Because code's syntax is rigid, and simple tokens such as `:=` (the assignment operator in Go) are perfect predictors of the underlying language:
```python
pipeline(":=")
# [{'label': 'go', 'score': 0.9998052}]
```
By the way, because we trained our own custom tokenizer on the [CodeSearchNet](https://github.blog/2019-09-26-introducing-the-codesearchnet-challenge/) dataset, and it handles streams of bytes in a very generic way, syntactic constructs such `:=` are represented by a single token:
```python
self.tokenizer.encode(" :=", add_special_tokens=False)
# [521]
```
<br>
## Fine-tuning code
<details>
```python
import gzip
import json
import logging
import os
from pathlib import Path
from typing import Dict, List, Tuple
import numpy as np
import torch
from sklearn.metrics import f1_score
from tokenizers.implementations.byte_level_bpe import ByteLevelBPETokenizer
from tokenizers.processors import BertProcessing
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data import DataLoader, Dataset
from torch.utils.data.dataset import Dataset
from torch.utils.tensorboard.writer import SummaryWriter
from tqdm import tqdm, trange
from transformers import RobertaForSequenceClassification
from transformers.data.metrics import acc_and_f1, simple_accuracy
logging.basicConfig(level=logging.INFO)
CODEBERTA_PRETRAINED = "huggingface/CodeBERTa-small-v1"
LANGUAGES = [
"go",
"java",
"javascript",
"php",
"python",
"ruby",
]
FILES_PER_LANGUAGE = 1
EVALUATE = True
# Set up tokenizer
tokenizer = ByteLevelBPETokenizer("./pretrained/vocab.json", "./pretrained/merges.txt",)
tokenizer._tokenizer.post_processor = BertProcessing(
("</s>", tokenizer.token_to_id("</s>")), ("<s>", tokenizer.token_to_id("<s>")),
)
tokenizer.enable_truncation(max_length=512)
# Set up Tensorboard
tb_writer = SummaryWriter()
class CodeSearchNetDataset(Dataset):
examples: List[Tuple[List[int], int]]
def __init__(self, split: str = "train"):
"""
train | valid | test
"""
self.examples = []
src_files = []
for language in LANGUAGES:
src_files += list(
Path("../CodeSearchNet/resources/data/").glob(f"{language}/final/jsonl/{split}/*.jsonl.gz")
)[:FILES_PER_LANGUAGE]
for src_file in src_files:
label = src_file.parents[3].name
label_idx = LANGUAGES.index(label)
print("🔥", src_file, label)
lines = []
fh = gzip.open(src_file, mode="rt", encoding="utf-8")
for line in fh:
o = json.loads(line)
lines.append(o["code"])
examples = [(x.ids, label_idx) for x in tokenizer.encode_batch(lines)]
self.examples += examples
print("🔥🔥")
def __len__(self):
return len(self.examples)
def __getitem__(self, i):
# We’ll pad at the batch level.
return self.examples[i]
model = RobertaForSequenceClassification.from_pretrained(CODEBERTA_PRETRAINED, num_labels=len(LANGUAGES))
train_dataset = CodeSearchNetDataset(split="train")
eval_dataset = CodeSearchNetDataset(split="test")
def collate(examples):
input_ids = pad_sequence([torch.tensor(x[0]) for x in examples], batch_first=True, padding_value=1)
labels = torch.tensor([x[1] for x in examples])
# ^^ uncessary .unsqueeze(-1)
return input_ids, labels
train_dataloader = DataLoader(train_dataset, batch_size=256, shuffle=True, collate_fn=collate)
batch = next(iter(train_dataloader))
model.to("cuda")
model.train()
for param in model.roberta.parameters():
param.requires_grad = False
## ^^ Only train final layer.
print(f"num params:", model.num_parameters())
print(f"num trainable params:", model.num_parameters(only_trainable=True))
def evaluate():
eval_loss = 0.0
nb_eval_steps = 0
preds = np.empty((0), dtype=np.int64)
out_label_ids = np.empty((0), dtype=np.int64)
model.eval()
eval_dataloader = DataLoader(eval_dataset, batch_size=512, collate_fn=collate)
for step, (input_ids, labels) in enumerate(tqdm(eval_dataloader, desc="Eval")):
with torch.no_grad():
outputs = model(input_ids=input_ids.to("cuda"), labels=labels.to("cuda"))
loss = outputs[0]
logits = outputs[1]
eval_loss += loss.mean().item()
nb_eval_steps += 1
preds = np.append(preds, logits.argmax(dim=1).detach().cpu().numpy(), axis=0)
out_label_ids = np.append(out_label_ids, labels.detach().cpu().numpy(), axis=0)
eval_loss = eval_loss / nb_eval_steps
acc = simple_accuracy(preds, out_label_ids)
f1 = f1_score(y_true=out_label_ids, y_pred=preds, average="macro")
print("=== Eval: loss ===", eval_loss)
print("=== Eval: acc. ===", acc)
print("=== Eval: f1 ===", f1)
# print(acc_and_f1(preds, out_label_ids))
tb_writer.add_scalars("eval", {"loss": eval_loss, "acc": acc, "f1": f1}, global_step)
### Training loop
global_step = 0
train_iterator = trange(0, 4, desc="Epoch")
optimizer = torch.optim.AdamW(model.parameters())
for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration")
for step, (input_ids, labels) in enumerate(epoch_iterator):
optimizer.zero_grad()
outputs = model(input_ids=input_ids.to("cuda"), labels=labels.to("cuda"))
loss = outputs[0]
loss.backward()
tb_writer.add_scalar("training_loss", loss.item(), global_step)
optimizer.step()
global_step += 1
if EVALUATE and global_step % 50 == 0:
evaluate()
model.train()
evaluate()
os.makedirs("./models/CodeBERT-language-id", exist_ok=True)
model.save_pretrained("./models/CodeBERT-language-id")
```
</details>
<br>
## CodeSearchNet citation
<details>
```bibtex
@article{husain_codesearchnet_2019,
title = {{CodeSearchNet} {Challenge}: {Evaluating} the {State} of {Semantic} {Code} {Search}},
shorttitle = {{CodeSearchNet} {Challenge}},
url = {http://arxiv.org/abs/1909.09436},
urldate = {2020-03-12},
journal = {arXiv:1909.09436 [cs, stat]},
author = {Husain, Hamel and Wu, Ho-Hsiang and Gazit, Tiferet and Allamanis, Miltiadis and Brockschmidt, Marc},
month = sep,
year = {2019},
note = {arXiv: 1909.09436},
}
```
</details> |