File size: 3,305 Bytes
28ab382 89a5574 038910c 335c5e7 038910c daca16f 993f19b 28ab382 993f19b 28ab382 993f19b 28ab382 993f19b 28ab382 993f19b 28ab382 993f19b 28ab382 993f19b 28ab382 993f19b 28ab382 993f19b 28ab382 993f19b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
tags:
- fastai
- text-classification
datasets: rajeshradhakrishnan/malayalam_news
widget:
- text: ഓഹരി വിപണി തകരുമ്പോള് നിക്ഷേപം എങ്ങനെ സുരക്ഷിതമാക്കാം
example_title: Malayalam News Classifier
---
# Malayalam (മലയാളം) Classifier using fastai (Working in Progress)
🥳 This model is my attempt to use machine learning using Malayalam Language. Huge inspiration from [Malayalam Text Classifier](https://kurianbenoy.com/2022-05-30-malayalamtext-0/). Courtesy to @waydegilliam for [blurr](https://ohmeow.github.io/blurr/text-examples-multilabel.html)
🌈 മലയാളത്തിൽ മെഷീൻ ലീർണിങ് പഠിക്കാനും പിന്നേ പരിചയപ്പെടാനും, to be continued...
# How its built ? & How to use ?
Please find the [notebook](https://nbviewer.org/github/rajeshradhakrishnanmvk/kitchen2.0/blob/feature101-frontend/ml/fastai_X_Hugging_Face_Group_2022.ipynb) used for training the model
Usage:
First, install the utilities to load the model as well as `blurr`, which was used to train this model.
```bash
!pip install huggingface_hub[fastai]
!git clone https://github.com/ohmeow/blurr.git && cd blurr && pip install -e ".[dev]"
```
```python
from huggingface_hub import from_pretrained_fastai
learner = from_pretrained_fastai("rajeshradhakrishnan/ml-news-classify-fastai")
sentences = ["ഓഹരി വിപണി തകരുമ്പോള് നിക്ഷേപം എങ്ങനെ സുരക്ഷിതമാക്കാം",
"വാര്ണറുടെ ഒറ്റക്കയ്യന് ക്യാച്ചില് അമ്പരന്ന് ക്രിക്കറ്റ് ലോകം"]
probs = learner.predict(sentences)
# 'business', 'entertainment', 'sports', 'technology'
for idx in range(len(sentences)):
print(f"Probability that sentence '{sentences[idx]}' is business is: {100*probs[idx]['probs'][0]:.2f}%")
print(f"Probability that sentence '{sentences[idx]}' is entertainment is: {100*probs[idx]['probs'][1]:.2f}%")
print(f"Probability that sentence '{sentences[idx]}' is sports is: {100*probs[idx]['probs'][2]:.2f}%")
print(f"Probability that sentence '{sentences[idx]}' is technology is: {100*probs[idx]['probs'][3]:.2f}%")
```
---
# Model card
## Model description
The is a Malayalam classifier model for labels 'business', 'entertainment', 'sports', 'technology'.
## Intended uses & limitations
The model can be used to categorize malayalam new sfeed.
## Training and evaluation data
Data is from the [AI4Bharat-IndicNLP Dataset](https://github.com/AI4Bharat/indicnlp_corpus#indicnlp-news-article-classification-dataset) and wrapper to extract only Malayalam data( [HF dataset](https://huggingface.co/datasets/rajeshradhakrishnan/malayalam_news))!.
## Citation
```
@article{kunchukuttan2020indicnlpcorpus,
title={AI4Bharat-IndicNLP Corpus: Monolingual Corpora and Word Embeddings for Indic Languages},
author={Anoop Kunchukuttan and Divyanshu Kakwani and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},
year={2020},
journal={arXiv preprint arXiv:2005.00085},
}
``` |