--- license: llama3 base_model: ajibawa-2023/Code-Llama-3-8B tags: - generated_from_trainer model-index: - name: Code-Llama-3-8B-finetuned-py-to-cpp results: [] pipeline_tag: text-generation library_name: transformers --- # Code-Llama-3-8B-finetuned-py-to-cpp This model is a fine-tuned version of [ajibawa-2023/Code-Llama-3-8B](https://huggingface.co/ajibawa-2023/Code-Llama-3-8B) on the [XLCoST](https://github.com/reddy-lab-code-research/XLCoST) (Python-C++) dataset, restricted to code snippets of <= 128 tokens long. It achieves the following results on the evaluation set: - Loss: 0.4550 Test set: - BLEU: 38.48 - COMET: 79.28 - CodeBLEU: 64.11 - N-gram match score: 40.15 - Weighted n-gram match score: 77.11 - Syntax match score: 67.02 - Dataflow match score: 72.13 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.99 | 87 | 0.5468 | | No log | 2.0 | 175 | 0.4626 | | No log | 2.98 | 261 | 0.4550 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.13.3 ```