--- library_name: transformers base_model: dccuchile/bert-base-spanish-wwm-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: beto-pos results: [] --- # beto-pos This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-cased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0894 - Precision: 0.9797 - Recall: 0.9815 - F1: 0.9806 - Accuracy: 0.9811 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.4515 | 1.0 | 603 | 0.1079 | 0.9737 | 0.9760 | 0.9749 | 0.9763 | | 0.0607 | 2.0 | 1206 | 0.0957 | 0.9785 | 0.9803 | 0.9794 | 0.9798 | | 0.0344 | 3.0 | 1809 | 0.0894 | 0.9797 | 0.9815 | 0.9806 | 0.9811 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.0.2 - Tokenizers 0.19.1