huihui-ai commited on
Commit
c73f2d5
·
verified ·
1 Parent(s): 22acafe

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +78 -3
README.md CHANGED
@@ -1,3 +1,78 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+ datasets:
5
+ - huihui-ai/QWQ-LONGCOT-500K
6
+ - huihui-ai/LONGCOT-Refine-500K
7
+ base_model:
8
+ - huihui-ai/Llama-3.2-3B-Instruct-abliterated
9
+ ---
10
+ # MicroThinker-1B-Preview
11
+
12
+ MicroThinker-1B-Preview, a new model fine-tuned from the [huihui-ai/Llama-3.2-3B-Instruct-abliterated](https://huggingface.co/huihui-ai/Llama-3.2-3B-Instruct-abliterated) model.
13
+
14
+ ## Training Details
15
+
16
+ This is just a test, but the performance is quite good. Now, I'll introduce the test environment.
17
+
18
+ The model was trained using 1 RTX 4090 GPU(24GB)
19
+
20
+ The [SFT (Supervised Fine-Tuning)](https://github.com/modelscope/ms-swift) process is divided into several steps, and no code needs to be written.
21
+ 1. Create the environment.
22
+
23
+ '''
24
+ mkdir MicroThinker-1B-Preview
25
+ cd MicroThinker-1B-Preview
26
+ conda create -yn ms-swift python=3.11
27
+ conda activate ms-swift
28
+
29
+ git clone https://github.com/modelscope/ms-swift.git
30
+
31
+ cd ms-swift
32
+ pip install -e .
33
+ cd ..
34
+ '''
35
+
36
+ 2. Download the model and dataset.
37
+
38
+ '''
39
+ huggingface-cli download huihui-ai/Llama-3.2-1B-Instruct-abliterated --local-dir ./huihui-ai/Llama-3.2-1B-Instruct-abliterated
40
+ huggingface-cli download --repo-type dataset huihui-ai/QWQ-LONGCOT-500K --local-dir ./data/QWQ-LONGCOT-500K
41
+ huggingface-cli download --repo-type dataset huihui-ai/LONGCOT-Refine-500K --local-dir ./data/LONGCOT-Refine-500K
42
+ '''
43
+
44
+ 3. Used only the huihui-ai/QWQ-LONGCOT-500K dataset (#20000), Trained for 1 epoch:
45
+
46
+ '''
47
+ swift sft --model huihui-ai/Llama-3.2-1B-Instruct-abliterated --model_type llama3_2 --train_type lora --dataset "data/qwq_500k.jsonl#20000" --torch_dtype bfloat16 --num_train_epochs 1 --per_device_train_batch_size 1 --per_device_eval_batch_size 1 --learning_rate 1e-4 --lora_rank 8 --lora_alpha 32 --target_modules all-linear --gradient_accumulation_steps 16 --eval_steps 50 --save_steps 50 --save_total_limit 2 --logging_steps 5 --max_length 16384 --output_dir output/Llama-3.2-1B-Instruct-abliterated/lora/sft --system "You are a helpful assistant. You should think step-by-step." --warmup_ratio 0.05 --dataloader_num_workers 4 --model_author "huihui-ai" --model_name "huihui-ai-robot"
48
+ '''
49
+
50
+ 4. Save the fine-tuned model.
51
+ Replace the directories below with specific ones.
52
+
53
+ '''
54
+ swift infer --model huihui-ai/Llama-3.2-1B-Instruct-abliterated --adapters output/Llama-3.2-1B-Instruct-abliterated/lora/sft/v0-20250102-153619/checkpoint-1237 --merge_lora true
55
+ '''
56
+
57
+ This should create a new model directory: `checkpoint-1237-merged`, Copy or move this directory to the `huihui` directory.
58
+
59
+ 5. Combined training with huihui-ai/QWQ-LONGCOT-500K (#20000) and huihui-ai/LONGCOT-Refine datasets (#20000), Trained for 1 epoch:
60
+
61
+ '''
62
+ swift sft --model huihui-ai/checkpoint-1237-merged --model_type llama3_2 --train_type lora --dataset "data/qwq_500k.jsonl#20000" "data/refine_from_qwen2_5.jsonl#20000" --torch_dtype bfloat16 --num_train_epochs 1 --per_device_train_batch_size 1 --per_device_eval_batch_size 1 --learning_rate 1e-4 --lora_rank 8 --lora_alpha 32 --target_modules all-linear --gradient_accumulation_steps 16 --eval_steps 50 --save_steps 50 --save_total_limit 2 --logging_steps 5 --max_length 16384 --output_dir output/Llama-3.2-1B-Instruct-abliterated/lora/sft2 --system "You are a helpful assistant. You should think step-by-step." --warmup_ratio 0.05 --dataloader_num_workers 4 --model_author "huihui-ai" --model_name "huihui-ai-robot"
63
+ '''
64
+
65
+ 6. Save the final fine-tuned model.
66
+ Replace the directories below with specific ones.
67
+
68
+ '''
69
+ swift infer --model huihui-ai/checkpoint-1237-merged --adapters output/Llama-3.2-1B-Instruct-abliterated/lora/sft2/v0-20250103-121319/checkpoint-1237 --merge_lora true
70
+ '''
71
+
72
+ This should create a new model directory: `checkpoint-1237-merged`, Rename the directory to `MicroThinker-1B-Preview`, Copy or move this directory to the `huihui` directory.
73
+
74
+ 7. Perform inference on the final fine-tuned model.
75
+
76
+ '''
77
+ swift infer --model huihui/MicroThinker-1B-Preview --stream true --infer_backend pt --max_new_tokens 8192
78
+ '''