--- language: - en license: apache-2.0 library_name: transformers tags: - chat - abliterated - uncensored base_model: - huihui-ai/QwQ-32B-Preview-abliterated - huihui-ai/Qwen2.5-Coder-32B-Instruct-abliterated license_link: https://huggingface.co/huihui-ai/QwQ-32B-Coder-Fusion-9010/blob/main/LICENSE pipeline_tag: text-generation model-index: - name: QwQ-32B-Coder-Fusion-9010 results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 57.78 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=huihui-ai/QwQ-32B-Coder-Fusion-9010 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 53.02 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=huihui-ai/QwQ-32B-Coder-Fusion-9010 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 40.26 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=huihui-ai/QwQ-32B-Coder-Fusion-9010 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 14.88 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=huihui-ai/QwQ-32B-Coder-Fusion-9010 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 19.52 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=huihui-ai/QwQ-32B-Coder-Fusion-9010 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 51.11 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=huihui-ai/QwQ-32B-Coder-Fusion-9010 name: Open LLM Leaderboard --- # huihui-ai/QwQ-32B-Coder-Fusion-9010 ## Overview `QwQ-32B-Coder-Fusion-9010` is a mixed model that combines the strengths of two powerful Qwen-based models: [huihui-ai/QwQ-32B-Preview-abliterated](https://huggingface.co/huihui-ai/QwQ-32B-Preview-abliterated) and [huihui-ai/Qwen2.5-Coder-32B-Instruct-abliterated](https://huggingface.co/huihui-ai/Qwen2.5-Coder-32B-Instruct-abliterated). The weights are blended in a 9:1 ratio, with 90% of the weights from the abliterated QwQ-32B-Preview-abliterated and 10% from the abliterated Qwen2.5-Coder-32B-Instruct-abliterated model. **Although it's a simple mix, the model is usable, and no gibberish has appeared**. This is an experiment. I test the [9:1](https://huggingface.co/huihui-ai/QwQ-32B-Coder-Fusion-9010), [8:2](https://huggingface.co/huihui-ai/QwQ-32B-Coder-Fusion-8020), and [7:3](https://huggingface.co/huihui-ai/QwQ-32B-Coder-Fusion-7030) ratios separately to see how much impact they have on the model. Now the effective ratios are 9:1, 8:2, and 7:3. Any other ratios (6:4,5:5) would result in mixed or unclear expressions. ## Model Details - **Base Models:** - [huihui-ai/QwQ-32B-Preview-abliterated](https://huggingface.co/huihui-ai/QwQ-32B-Preview-abliterated) (90%) - [huihui-ai/Qwen2.5-Coder-32B-Instruct-abliterated](https://huggingface.co/huihui-ai/Qwen2.5-Coder-32B-Instruct-abliterated) (10%) - **Model Size:** 32B parameters - **Architecture:** Qwen 2.5 - **Mixing Ratio:** 9:1 (QwQ-32B-Preview-abliterated:Qwen2.5-Coder-32B-Instruct-abliterated) ## ollama You can use [huihui_ai/qwq-fusion](https://ollama.com/huihui_ai/qwq-fusion) directly, ``` ollama run huihui_ai/qwq-fusion ``` Other proportions can be obtained by visiting [huihui_ai/qwq-fusion](https://ollama.com/huihui_ai/qwq-fusion/tags). # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_huihui-ai__QwQ-32B-Coder-Fusion-9010) | Metric |Value| |-------------------|----:| |Avg. |39.43| |IFEval (0-Shot) |57.78| |BBH (3-Shot) |53.02| |MATH Lvl 5 (4-Shot)|40.26| |GPQA (0-shot) |14.88| |MuSR (0-shot) |19.52| |MMLU-PRO (5-shot) |51.11|