--- library_name: transformers license: apache-2.0 language: - en tags: - Safetensors - conversational - text-generation-inference - abliterated - uncensored base_model: - HuggingFaceTB/SmolLM2-1.7B-Instruct --- # huihui-ai/SmolLM2-1.7B-Instruct-abliterated This is an uncensored version of [HuggingFaceTB/SmolLM2-1.7B-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B-Instruct) created with abliteration (see [remove-refusals-with-transformers](https://github.com/Sumandora/remove-refusals-with-transformers) to know more about it). If the desired result is not achieved, you can clear the conversation and try again. ### How to use ### Transformers ```bash pip install transformers ``` ```python from transformers import AutoModelForCausalLM, AutoTokenizer checkpoint = "huihui-ai/SmolLM2-1.7B-Instruct-abliterated" device = "cuda" # for GPU usage or "cpu" for CPU usage tokenizer = AutoTokenizer.from_pretrained(checkpoint) # for multiple GPUs install accelerate and do `model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto")` model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device) messages = [{"role": "user", "content": "What is the capital of France."}] input_text=tokenizer.apply_chat_template(messages, tokenize=False) inputs = tokenizer.encode(input_text, return_tensors="pt").to(device) outputs = model.generate(inputs, max_new_tokens=50, temperature=0.2, top_p=0.9, do_sample=True) print(tokenizer.decode(outputs[0])) ```