huijian222
commited on
Commit
•
486457d
1
Parent(s):
89737d6
Initial commit
Browse files- .gitattributes +1 -0
- README.md +36 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +105 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -30,3 +30,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
30 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
31 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
32 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
30 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
31 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
32 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
33 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 1245.42 +/- 483.73
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: AntBulletEnv-v0
|
20 |
+
type: AntBulletEnv-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
24 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:72b7aff59c0efac2344eb266248e0ba5a4dee8c94e980099e3835afae46ec246
|
3 |
+
size 129194
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f81b288a290>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f81b288a320>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f81b288a3b0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f81b288a440>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f81b288a4d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f81b288a560>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f81b288a5f0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f81b288a680>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f81b288a710>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f81b288a7a0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f81b288a830>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f81b28d79f0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
25 |
+
"log_std_init": -2,
|
26 |
+
"ortho_init": false,
|
27 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
28 |
+
"optimizer_kwargs": {
|
29 |
+
"alpha": 0.99,
|
30 |
+
"eps": 1e-05,
|
31 |
+
"weight_decay": 0
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"observation_space": {
|
35 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
36 |
+
":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=",
|
37 |
+
"dtype": "float32",
|
38 |
+
"_shape": [
|
39 |
+
28
|
40 |
+
],
|
41 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
42 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
43 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
44 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"_np_random": null
|
46 |
+
},
|
47 |
+
"action_space": {
|
48 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
49 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu",
|
50 |
+
"dtype": "float32",
|
51 |
+
"_shape": [
|
52 |
+
8
|
53 |
+
],
|
54 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
55 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
56 |
+
"bounded_below": "[ True True True True True True True True]",
|
57 |
+
"bounded_above": "[ True True True True True True True True]",
|
58 |
+
"_np_random": null
|
59 |
+
},
|
60 |
+
"n_envs": 4,
|
61 |
+
"num_timesteps": 2000000,
|
62 |
+
"_total_timesteps": 2000000,
|
63 |
+
"_num_timesteps_at_start": 0,
|
64 |
+
"seed": null,
|
65 |
+
"action_noise": null,
|
66 |
+
"start_time": 1663315250.2892761,
|
67 |
+
"learning_rate": 0.00096,
|
68 |
+
"tensorboard_log": "./tensorboard",
|
69 |
+
"lr_schedule": {
|
70 |
+
":type:": "<class 'function'>",
|
71 |
+
":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
72 |
+
},
|
73 |
+
"_last_obs": {
|
74 |
+
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAC6/+PutZ877+8QY/W8a5P+0O274S+80/rtUDPxefDL+wZnY/I1cTvxXsSD9NR+K/XIQGv4PzhT+6JhK/eF1NP11TS77ctnI/2nkUP2HWy78W1zu/P9Q+v1h7qj7tV0c/IByuv0Ig0z4k4dw+wnw6P57Dcr0Qy0y//ECTPt/f3z/9qXg+oYU4P4BUBz+4qCg/1jx8P884CT+vlZM+ZnAcvjvsHT3uQwY/OEY1vzemlD/7R0E/whoLv/D5ij6eSRs/r0Kpvpbuib8G8dy+cZ//PvgzPD9CINM+N1oUwC+2r7+yWqu+tD5kv6/ESD46wnu/TToWvoNATj7x8J4+cJJgPvb1Sz+ycQy/lNbAPeuZqb7dIHc+K9bgvrWpQ72Zeg4+sF+OvQnivb7meLY+iqQKv73A3j8Ykzq+opKtPVC0gDv4Mzw/QiDTPiTh3D7CfDo/38xPP7F2yT2DWjE/pUh0v+x8xD3/EGE9WPigv1RwHcA3Eos/hjI8u0jFEUD3hKO8B9Wmv+UHazykJ04/aG7rPAFRrz/1COc8A4akv+fovjxv14i/ALNTPNuTXL9zdYu8+DM8P0Ig0z4k4dw+L7avv5R0lGIu"
|
76 |
+
},
|
77 |
+
"_last_episode_starts": {
|
78 |
+
":type:": "<class 'numpy.ndarray'>",
|
79 |
+
":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="
|
80 |
+
},
|
81 |
+
"_last_original_obs": {
|
82 |
+
":type:": "<class 'numpy.ndarray'>",
|
83 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAADS2tzIAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICL8b+9AAAAABpc+L8AAAAAlwILvgAAAACpMfM/AAAAANvg8j0AAAAAhVbvPwAAAACW/p49AAAAALhy3b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMuce1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAKA3tPAAAAABjsPq/AAAAANGg+L0AAAAAwsHfPwAAAACjO5c9AAAAAIZf6j8AAAAAwcbruwAAAADjCO6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYm4wtAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPX/nb0AAAAA5A3uvwAAAABeWoc7AAAAANC42z8AAAAA9BoHvgAAAACuk+4/AAAAABd+P70AAAAAtcLqvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANVvIrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICbOgA+AAAAALf8/b8AAAAAM7PQvQAAAACgRuw/AAAAAHriDT4AAAAA/YLoPwAAAADj2pk8AAAAAEKG578AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"
|
84 |
+
},
|
85 |
+
"_episode_num": 0,
|
86 |
+
"use_sde": true,
|
87 |
+
"sde_sample_freq": -1,
|
88 |
+
"_current_progress_remaining": 0.0,
|
89 |
+
"ep_info_buffer": {
|
90 |
+
":type:": "<class 'collections.deque'>",
|
91 |
+
":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJAEhPfsNUiMAWyUTegDjAF0lEdAqidzkU9IPXV9lChoBkdAgeYDynUDuGgHTegDaAhHQKopI8qWkad1fZQoaAZHQJKbpRJmNBFoB03oA2gIR0CqKc2OAAhjdX2UKGgGR0CMOI1/DtPYaAdN6ANoCEdAqjDaDZlFt3V9lChoBkdAhul38O09hmgHTegDaAhHQKo1aNfgJkZ1fZQoaAZHQIVj0JdB0IVoB03oA2gIR0CqNxdDx9XtdX2UKGgGR0CCbo4+bExZaAdN6ANoCEdAqjfCZ0CA+nV9lChoBkdAhY9TFdcB2mgHTegDaAhHQKo+0/LTx5N1fZQoaAZHQJMMvEwWWQhoB03oA2gIR0CqQ3dmHxjKdX2UKGgGR0CQKn9xp+MIaAdN6ANoCEdAqkU32h7E53V9lChoBkdAifwKiGnGbWgHTegDaAhHQKpGATgVGkN1fZQoaAZHQJJxOmfoRqZoB03oA2gIR0CqTt9gnc+JdX2UKGgGR0CEQUdIXj2jaAdN6ANoCEdAqlN7987ZF3V9lChoBkdAkHOMsMAmzGgHTegDaAhHQKpVLPM0P6N1fZQoaAZHQI/eb6tT1kFoB03oA2gIR0CqVdjNY8uBdX2UKGgGR0CQP7G6f8MvaAdN6ANoCEdAql0DOqvNeXV9lChoBkdAixfkHD766GgHTegDaAhHQKphoVgx8D11fZQoaAZHQI35q5f+judoB03oA2gIR0CqY05Sm65HdX2UKGgGR0CLH2T0QK8daAdN6ANoCEdAqmP1vbXYlXV9lChoBkdAiFmsSK3uu2gHTegDaAhHQKpq+owVTJh1fZQoaAZHQIt7GhVU+9toB03oA2gIR0Cqb4N7SiM6dX2UKGgGR0CQKxX5FgDzaAdN6ANoCEdAqnE4Kneiz3V9lChoBkdAiixHyup0fmgHTegDaAhHQKpx6UIsyzp1fZQoaAZHQI+286eXiR5oB03oA2gIR0CqeQZs0pEydX2UKGgGR0COPUe/Yao/aAdN6ANoCEdAqn2Xy5I6KnV9lChoBkdAlOUkcwQDm2gHTegDaAhHQKp/XIy0rsl1fZQoaAZHQIn0MGRmseZoB03oA2gIR0CqgAntF8XvdX2UKGgGR0CLgiE4//vOaAdN6ANoCEdAqoc+9Htnf3V9lChoBkdAkLeDakAPu2gHTegDaAhHQKqLxGn4wh51fZQoaAZHQJXhD6P8yetoB03oA2gIR0CqjWdAPd2xdX2UKGgGR0CTvg4I8hcJaAdN6ANoCEdAqo4WhkAggXV9lChoBkdAlIRLm2b5M2gHTegDaAhHQKqVLSSeRPp1fZQoaAZHQJTsOJP69ChoB03oA2gIR0CqmaNwiqyXdX2UKGgGR0CVMvhmGucMaAdN6ANoCEdAqptQiaAnUnV9lChoBkdAlrcUe+23KGgHTegDaAhHQKqb9xHXmNl1fZQoaAZHQJjKvyPMjeNoB03oA2gIR0Cqov0x/NJOdX2UKGgGR0CXwl2qDK5kaAdN6ANoCEdAqqeAUJv5xnV9lChoBkdAlqnI1He7+WgHTegDaAhHQKqpMoESuhd1fZQoaAZHQJRxB2ki2UloB03oA2gIR0Cqqd4vvjOtdX2UKGgGR0CZQ+wMH8jzaAdN6ANoCEdAqrDslXzUZ3V9lChoBkdAmLE7jDKoymgHTegDaAhHQKq1b9qDbrV1fZQoaAZHQJaBa/FirktoB03oA2gIR0CqtyEa2nbZdX2UKGgGR0CYw6u/UONHaAdN6ANoCEdAqrfOKhtcfXV9lChoBkdAj372VE/jbWgHTegDaAhHQKq/CkEcKgJ1fZQoaAZHQJkIPSPU8V5oB03oA2gIR0Cqw4J5u63BdX2UKGgGR0CZNAXIU8FIaAdN6ANoCEdAqsUunn+yaHV9lChoBkdAmicSPU8V6GgHTegDaAhHQKrF6aKk2xZ1fZQoaAZHQJZa8hPj4pNoB03oA2gIR0CqzQGKqGUOdX2UKGgGR0CS+3U70WdmaAdN6ANoCEdAqtGdHavicXV9lChoBkdAkzVjNpudgGgHTegDaAhHQKrTRq5byH51fZQoaAZHQJNbnMwDeTFoB03oA2gIR0Cq0+sgEEDAdX2UKGgGR0CQNjcR15jZaAdN6ANoCEdAqtrorJ8v3HV9lChoBkdAjuQGbsniN2gHTegDaAhHQKrfYJUo8ZF1fZQoaAZHQJr42m+CbttoB03oA2gIR0Cq4QbN8ma6dX2UKGgGR0CXbx6IWP92aAdN6ANoCEdAquGuIVM233V9lChoBkdAlWQVfReC1GgHTegDaAhHQKroql9Brvd1fZQoaAZHQJWT/5AQg9xoB03oA2gIR0Cq7Sss6JZXdX2UKGgGR0CXEQ/t6X0HaAdN6ANoCEdAqu7R/qgRLHV9lChoBkdAkTcTqnm7rmgHTegDaAhHQKrve0aZQYV1fZQoaAZHQJK2zlijL0VoB03oA2gIR0Cq9mskpqh2dX2UKGgGR0CWGDVWCEpRaAdN6ANoCEdAqvsCONo8IXV9lChoBkdAlkVRXfZVXGgHTegDaAhHQKr8q8/Uvwp1fZQoaAZHQJY3dB/qgRNoB03oA2gIR0Cq/VrCN0eVdX2UKGgGR0CTZ8UH6dlNaAdN6ANoCEdAqwRoK4QSSXV9lChoBkdAlag3TNMXamgHTegDaAhHQKsI7Sv1UVB1fZQoaAZHQJSSInF5v99oB03oA2gIR0CrCpb+T/yYdX2UKGgGR0CTuecM3IdVaAdN6ANoCEdAqwtAwwj+rHV9lChoBkdAlgQ8EzO5a2gHTegDaAhHQKsSMq2jO9p1fZQoaAZHQJQwk29+PR1oB03oA2gIR0CrFtD9n9NvdX2UKGgGR0CXfBZEDyOJaAdN6ANoCEdAqxh3eDWbw3V9lChoBkdAl411A3T/hmgHTegDaAhHQKsZILH+6y11fZQoaAZHQJM2m1XvH95oB03oA2gIR0CrICOCPIXCdX2UKGgGR0CUfvbuMMqjaAdN6ANoCEdAqySkpZwGW3V9lChoBkdAlsWlXaJyhmgHTegDaAhHQKsmS56MR6F1fZQoaAZHQJQdec9W6shoB03oA2gIR0CrJvZZjhDPdX2UKGgGR0CWwaIpYs/ZaAdN6ANoCEdAqy4DVlPJrHV9lChoBkdAlDsQ8KXv6WgHTegDaAhHQKsyhteD3/R1fZQoaAZHQJmxfqAz545oB03oA2gIR0CrNDI9TxXodX2UKGgGR0CXz6Pq9oN/aAdN6ANoCEdAqzTtBF/hEXV9lChoBkdAlNZ/Y4ACGWgHTegDaAhHQKs8Abo8p1B1fZQoaAZHQJRe5gH/tIFoB03oA2gIR0CrQKGc4HX3dX2UKGgGR0CUolg88s+WaAdN6ANoCEdAq0Jb7sOXmnV9lChoBkdAly/hZIQOF2gHTegDaAhHQKtDBQk5ZKZ1fZQoaAZHQJgrw9U0eltoB03oA2gIR0CrSgNVzZHvdX2UKGgGR0CFPIG1QZXNaAdN6ANoCEdAq06aUHIIW3V9lChoBkdAmMwMH8jzI2gHTegDaAhHQKtQRm2b5M11fZQoaAZHQJgG2xD9fkZoB03oA2gIR0CrUPIA4n4PdX2UKGgGR0CXjeM7U5MlaAdN6ANoCEdAq1gDmITGpHV9lChoBkdAmmbAGGEf1mgHTegDaAhHQKtciU/wAlx1fZQoaAZHQJiWVHWjGkxoB03oA2gIR0CrXkN1yNn5dX2UKGgGR0CXOx6WgOBlaAdN6ANoCEdAq17q1kUbk3V9lChoBkdAloTT3VTaTWgHTegDaAhHQKtmGWldkax1fZQoaAZHQJTD8580DU5oB03oA2gIR0Craqk6cRUWdX2UKGgGR0CYddyvs7dSaAdN6ANoCEdAq2xOHLzPKXV9lChoBkdAj/DJhWo3rGgHTegDaAhHQKts+caOxSp1fZQoaAZHQJlHjeANG3FoB03oA2gIR0CrdAa4c3l0dX2UKGgGR0CXb+tBv73xaAdN6ANoCEdAq3ipPhybQXV9lChoBkdAmE2xgE2YOWgHTegDaAhHQKt6UxmCiAV1fZQoaAZHQJgoiTOgQH1oB03oA2gIR0CreweqBErodX2UKGgGR0CKPAa2nbZfaAdN6ANoCEdAq4IXOfNA1XVlLg=="
|
92 |
+
},
|
93 |
+
"ep_success_buffer": {
|
94 |
+
":type:": "<class 'collections.deque'>",
|
95 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
96 |
+
},
|
97 |
+
"_n_updates": 62500,
|
98 |
+
"n_steps": 8,
|
99 |
+
"gamma": 0.99,
|
100 |
+
"gae_lambda": 0.9,
|
101 |
+
"ent_coef": 0.0,
|
102 |
+
"vf_coef": 0.4,
|
103 |
+
"max_grad_norm": 0.5,
|
104 |
+
"normalize_advantage": false
|
105 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:83687b3c787124aa427b7a8e75af251f2c3eafda63d0be864e7c580af25cd706
|
3 |
+
size 56126
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ebd9b3d905c40a8ad47856d145681a8547a02037432de6ca688d74db3ae13c06
|
3 |
+
size 56766
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.7.14
|
3 |
+
Stable-Baselines3: 1.6.0
|
4 |
+
PyTorch: 1.12.1+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f81b288a290>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f81b288a320>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f81b288a3b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f81b288a440>", "_build": "<function ActorCriticPolicy._build at 0x7f81b288a4d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f81b288a560>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f81b288a5f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f81b288a680>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f81b288a710>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f81b288a7a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f81b288a830>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f81b28d79f0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1663315250.2892761, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAC6/+PutZ877+8QY/W8a5P+0O274S+80/rtUDPxefDL+wZnY/I1cTvxXsSD9NR+K/XIQGv4PzhT+6JhK/eF1NP11TS77ctnI/2nkUP2HWy78W1zu/P9Q+v1h7qj7tV0c/IByuv0Ig0z4k4dw+wnw6P57Dcr0Qy0y//ECTPt/f3z/9qXg+oYU4P4BUBz+4qCg/1jx8P884CT+vlZM+ZnAcvjvsHT3uQwY/OEY1vzemlD/7R0E/whoLv/D5ij6eSRs/r0Kpvpbuib8G8dy+cZ//PvgzPD9CINM+N1oUwC+2r7+yWqu+tD5kv6/ESD46wnu/TToWvoNATj7x8J4+cJJgPvb1Sz+ycQy/lNbAPeuZqb7dIHc+K9bgvrWpQ72Zeg4+sF+OvQnivb7meLY+iqQKv73A3j8Ykzq+opKtPVC0gDv4Mzw/QiDTPiTh3D7CfDo/38xPP7F2yT2DWjE/pUh0v+x8xD3/EGE9WPigv1RwHcA3Eos/hjI8u0jFEUD3hKO8B9Wmv+UHazykJ04/aG7rPAFRrz/1COc8A4akv+fovjxv14i/ALNTPNuTXL9zdYu8+DM8P0Ig0z4k4dw+L7avv5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAADS2tzIAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICL8b+9AAAAABpc+L8AAAAAlwILvgAAAACpMfM/AAAAANvg8j0AAAAAhVbvPwAAAACW/p49AAAAALhy3b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMuce1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAKA3tPAAAAABjsPq/AAAAANGg+L0AAAAAwsHfPwAAAACjO5c9AAAAAIZf6j8AAAAAwcbruwAAAADjCO6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYm4wtAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPX/nb0AAAAA5A3uvwAAAABeWoc7AAAAANC42z8AAAAA9BoHvgAAAACuk+4/AAAAABd+P70AAAAAtcLqvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANVvIrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICbOgA+AAAAALf8/b8AAAAAM7PQvQAAAACgRuw/AAAAAHriDT4AAAAA/YLoPwAAAADj2pk8AAAAAEKG578AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJAEhPfsNUiMAWyUTegDjAF0lEdAqidzkU9IPXV9lChoBkdAgeYDynUDuGgHTegDaAhHQKopI8qWkad1fZQoaAZHQJKbpRJmNBFoB03oA2gIR0CqKc2OAAhjdX2UKGgGR0CMOI1/DtPYaAdN6ANoCEdAqjDaDZlFt3V9lChoBkdAhul38O09hmgHTegDaAhHQKo1aNfgJkZ1fZQoaAZHQIVj0JdB0IVoB03oA2gIR0CqNxdDx9XtdX2UKGgGR0CCbo4+bExZaAdN6ANoCEdAqjfCZ0CA+nV9lChoBkdAhY9TFdcB2mgHTegDaAhHQKo+0/LTx5N1fZQoaAZHQJMMvEwWWQhoB03oA2gIR0CqQ3dmHxjKdX2UKGgGR0CQKn9xp+MIaAdN6ANoCEdAqkU32h7E53V9lChoBkdAifwKiGnGbWgHTegDaAhHQKpGATgVGkN1fZQoaAZHQJJxOmfoRqZoB03oA2gIR0CqTt9gnc+JdX2UKGgGR0CEQUdIXj2jaAdN6ANoCEdAqlN7987ZF3V9lChoBkdAkHOMsMAmzGgHTegDaAhHQKpVLPM0P6N1fZQoaAZHQI/eb6tT1kFoB03oA2gIR0CqVdjNY8uBdX2UKGgGR0CQP7G6f8MvaAdN6ANoCEdAql0DOqvNeXV9lChoBkdAixfkHD766GgHTegDaAhHQKphoVgx8D11fZQoaAZHQI35q5f+judoB03oA2gIR0CqY05Sm65HdX2UKGgGR0CLH2T0QK8daAdN6ANoCEdAqmP1vbXYlXV9lChoBkdAiFmsSK3uu2gHTegDaAhHQKpq+owVTJh1fZQoaAZHQIt7GhVU+9toB03oA2gIR0Cqb4N7SiM6dX2UKGgGR0CQKxX5FgDzaAdN6ANoCEdAqnE4Kneiz3V9lChoBkdAiixHyup0fmgHTegDaAhHQKpx6UIsyzp1fZQoaAZHQI+286eXiR5oB03oA2gIR0CqeQZs0pEydX2UKGgGR0COPUe/Yao/aAdN6ANoCEdAqn2Xy5I6KnV9lChoBkdAlOUkcwQDm2gHTegDaAhHQKp/XIy0rsl1fZQoaAZHQIn0MGRmseZoB03oA2gIR0CqgAntF8XvdX2UKGgGR0CLgiE4//vOaAdN6ANoCEdAqoc+9Htnf3V9lChoBkdAkLeDakAPu2gHTegDaAhHQKqLxGn4wh51fZQoaAZHQJXhD6P8yetoB03oA2gIR0CqjWdAPd2xdX2UKGgGR0CTvg4I8hcJaAdN6ANoCEdAqo4WhkAggXV9lChoBkdAlIRLm2b5M2gHTegDaAhHQKqVLSSeRPp1fZQoaAZHQJTsOJP69ChoB03oA2gIR0CqmaNwiqyXdX2UKGgGR0CVMvhmGucMaAdN6ANoCEdAqptQiaAnUnV9lChoBkdAlrcUe+23KGgHTegDaAhHQKqb9xHXmNl1fZQoaAZHQJjKvyPMjeNoB03oA2gIR0Cqov0x/NJOdX2UKGgGR0CXwl2qDK5kaAdN6ANoCEdAqqeAUJv5xnV9lChoBkdAlqnI1He7+WgHTegDaAhHQKqpMoESuhd1fZQoaAZHQJRxB2ki2UloB03oA2gIR0Cqqd4vvjOtdX2UKGgGR0CZQ+wMH8jzaAdN6ANoCEdAqrDslXzUZ3V9lChoBkdAmLE7jDKoymgHTegDaAhHQKq1b9qDbrV1fZQoaAZHQJaBa/FirktoB03oA2gIR0CqtyEa2nbZdX2UKGgGR0CYw6u/UONHaAdN6ANoCEdAqrfOKhtcfXV9lChoBkdAj372VE/jbWgHTegDaAhHQKq/CkEcKgJ1fZQoaAZHQJkIPSPU8V5oB03oA2gIR0Cqw4J5u63BdX2UKGgGR0CZNAXIU8FIaAdN6ANoCEdAqsUunn+yaHV9lChoBkdAmicSPU8V6GgHTegDaAhHQKrF6aKk2xZ1fZQoaAZHQJZa8hPj4pNoB03oA2gIR0CqzQGKqGUOdX2UKGgGR0CS+3U70WdmaAdN6ANoCEdAqtGdHavicXV9lChoBkdAkzVjNpudgGgHTegDaAhHQKrTRq5byH51fZQoaAZHQJNbnMwDeTFoB03oA2gIR0Cq0+sgEEDAdX2UKGgGR0CQNjcR15jZaAdN6ANoCEdAqtrorJ8v3HV9lChoBkdAjuQGbsniN2gHTegDaAhHQKrfYJUo8ZF1fZQoaAZHQJr42m+CbttoB03oA2gIR0Cq4QbN8ma6dX2UKGgGR0CXbx6IWP92aAdN6ANoCEdAquGuIVM233V9lChoBkdAlWQVfReC1GgHTegDaAhHQKroql9Brvd1fZQoaAZHQJWT/5AQg9xoB03oA2gIR0Cq7Sss6JZXdX2UKGgGR0CXEQ/t6X0HaAdN6ANoCEdAqu7R/qgRLHV9lChoBkdAkTcTqnm7rmgHTegDaAhHQKrve0aZQYV1fZQoaAZHQJK2zlijL0VoB03oA2gIR0Cq9mskpqh2dX2UKGgGR0CWGDVWCEpRaAdN6ANoCEdAqvsCONo8IXV9lChoBkdAlkVRXfZVXGgHTegDaAhHQKr8q8/Uvwp1fZQoaAZHQJY3dB/qgRNoB03oA2gIR0Cq/VrCN0eVdX2UKGgGR0CTZ8UH6dlNaAdN6ANoCEdAqwRoK4QSSXV9lChoBkdAlag3TNMXamgHTegDaAhHQKsI7Sv1UVB1fZQoaAZHQJSSInF5v99oB03oA2gIR0CrCpb+T/yYdX2UKGgGR0CTuecM3IdVaAdN6ANoCEdAqwtAwwj+rHV9lChoBkdAlgQ8EzO5a2gHTegDaAhHQKsSMq2jO9p1fZQoaAZHQJQwk29+PR1oB03oA2gIR0CrFtD9n9NvdX2UKGgGR0CXfBZEDyOJaAdN6ANoCEdAqxh3eDWbw3V9lChoBkdAl411A3T/hmgHTegDaAhHQKsZILH+6y11fZQoaAZHQJM2m1XvH95oB03oA2gIR0CrICOCPIXCdX2UKGgGR0CUfvbuMMqjaAdN6ANoCEdAqySkpZwGW3V9lChoBkdAlsWlXaJyhmgHTegDaAhHQKsmS56MR6F1fZQoaAZHQJQdec9W6shoB03oA2gIR0CrJvZZjhDPdX2UKGgGR0CWwaIpYs/ZaAdN6ANoCEdAqy4DVlPJrHV9lChoBkdAlDsQ8KXv6WgHTegDaAhHQKsyhteD3/R1fZQoaAZHQJmxfqAz545oB03oA2gIR0CrNDI9TxXodX2UKGgGR0CXz6Pq9oN/aAdN6ANoCEdAqzTtBF/hEXV9lChoBkdAlNZ/Y4ACGWgHTegDaAhHQKs8Abo8p1B1fZQoaAZHQJRe5gH/tIFoB03oA2gIR0CrQKGc4HX3dX2UKGgGR0CUolg88s+WaAdN6ANoCEdAq0Jb7sOXmnV9lChoBkdAly/hZIQOF2gHTegDaAhHQKtDBQk5ZKZ1fZQoaAZHQJgrw9U0eltoB03oA2gIR0CrSgNVzZHvdX2UKGgGR0CFPIG1QZXNaAdN6ANoCEdAq06aUHIIW3V9lChoBkdAmMwMH8jzI2gHTegDaAhHQKtQRm2b5M11fZQoaAZHQJgG2xD9fkZoB03oA2gIR0CrUPIA4n4PdX2UKGgGR0CXjeM7U5MlaAdN6ANoCEdAq1gDmITGpHV9lChoBkdAmmbAGGEf1mgHTegDaAhHQKtciU/wAlx1fZQoaAZHQJiWVHWjGkxoB03oA2gIR0CrXkN1yNn5dX2UKGgGR0CXOx6WgOBlaAdN6ANoCEdAq17q1kUbk3V9lChoBkdAloTT3VTaTWgHTegDaAhHQKtmGWldkax1fZQoaAZHQJTD8580DU5oB03oA2gIR0Craqk6cRUWdX2UKGgGR0CYddyvs7dSaAdN6ANoCEdAq2xOHLzPKXV9lChoBkdAj/DJhWo3rGgHTegDaAhHQKts+caOxSp1fZQoaAZHQJlHjeANG3FoB03oA2gIR0CrdAa4c3l0dX2UKGgGR0CXb+tBv73xaAdN6ANoCEdAq3ipPhybQXV9lChoBkdAmE2xgE2YOWgHTegDaAhHQKt6UxmCiAV1fZQoaAZHQJgoiTOgQH1oB03oA2gIR0CreweqBErodX2UKGgGR0CKPAa2nbZfaAdN6ANoCEdAq4IXOfNA1XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.14", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e0ee6b98645ba2786d11f3747f34a1332b20f98c654883bdfc73d5d4e93d6d4d
|
3 |
+
size 1014164
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1245.4220631013072, "std_reward": 483.7306183717612, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-09-16T09:09:36.716823"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d42c99e4972d84c91b56ebbb2107854942bfd078a3e0268de0d2fc3b702f4a13
|
3 |
+
size 2763
|