End of training
Browse files- README.md +81 -0
- logs/events.out.tfevents.1712281999.vibro-gpt-server1 +2 -2
- model.safetensors +1 -1
- preprocessor_config.json +25 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +80 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: microsoft/layoutlm-base-uncased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- funsd
|
8 |
+
model-index:
|
9 |
+
- name: layoutlm-funsd
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# layoutlm-funsd
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 1.1459
|
21 |
+
- Answer: {'precision': 0.3920704845814978, 'recall': 0.5500618046971569, 'f1': 0.45781893004115226, 'number': 809}
|
22 |
+
- Header: {'precision': 0.36363636363636365, 'recall': 0.2689075630252101, 'f1': 0.30917874396135264, 'number': 119}
|
23 |
+
- Question: {'precision': 0.5136876006441223, 'recall': 0.5990610328638498, 'f1': 0.553099263112267, 'number': 1065}
|
24 |
+
- Overall Precision: 0.4523
|
25 |
+
- Overall Recall: 0.5595
|
26 |
+
- Overall F1: 0.5002
|
27 |
+
- Overall Accuracy: 0.6006
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 3e-05
|
47 |
+
- train_batch_size: 16
|
48 |
+
- eval_batch_size: 8
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 15
|
53 |
+
- mixed_precision_training: Native AMP
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
59 |
+
| 1.7425 | 1.0 | 10 | 1.4798 | {'precision': 0.05438311688311688, 'recall': 0.08281829419035847, 'f1': 0.06565409113179814, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.2244367417677643, 'recall': 0.2431924882629108, 'f1': 0.2334384858044164, 'number': 1065} | 0.1366 | 0.1636 | 0.1489 | 0.3756 |
|
60 |
+
| 1.419 | 2.0 | 20 | 1.3167 | {'precision': 0.21116377040547657, 'recall': 0.4956736711990111, 'f1': 0.2961595273264402, 'number': 809} | {'precision': 0.08888888888888889, 'recall': 0.03361344537815126, 'f1': 0.048780487804878044, 'number': 119} | {'precision': 0.235467255334805, 'recall': 0.3004694835680751, 'f1': 0.264026402640264, 'number': 1065} | 0.2195 | 0.3638 | 0.2738 | 0.4192 |
|
61 |
+
| 1.2741 | 3.0 | 30 | 1.2387 | {'precision': 0.2594221105527638, 'recall': 0.5105067985166872, 'f1': 0.34402332361516036, 'number': 809} | {'precision': 0.2702702702702703, 'recall': 0.16806722689075632, 'f1': 0.2072538860103627, 'number': 119} | {'precision': 0.34717494894486045, 'recall': 0.4788732394366197, 'f1': 0.4025256511444357, 'number': 1065} | 0.3008 | 0.4732 | 0.3678 | 0.4611 |
|
62 |
+
| 1.147 | 4.0 | 40 | 1.1190 | {'precision': 0.26329113924050634, 'recall': 0.5142150803461063, 'f1': 0.34826287149434904, 'number': 809} | {'precision': 0.28, 'recall': 0.17647058823529413, 'f1': 0.21649484536082475, 'number': 119} | {'precision': 0.4030188679245283, 'recall': 0.5014084507042254, 'f1': 0.44686192468619246, 'number': 1065} | 0.3258 | 0.4872 | 0.3905 | 0.5426 |
|
63 |
+
| 1.0331 | 5.0 | 50 | 1.1534 | {'precision': 0.2893436838390967, 'recall': 0.5067985166872683, 'f1': 0.36837376460017973, 'number': 809} | {'precision': 0.2876712328767123, 'recall': 0.17647058823529413, 'f1': 0.21875000000000003, 'number': 119} | {'precision': 0.4215817694369973, 'recall': 0.5906103286384976, 'f1': 0.4919827923347672, 'number': 1065} | 0.3555 | 0.5319 | 0.4261 | 0.5476 |
|
64 |
+
| 0.9715 | 6.0 | 60 | 1.1035 | {'precision': 0.3210227272727273, 'recall': 0.5587144622991347, 'f1': 0.4077582318448354, 'number': 809} | {'precision': 0.3157894736842105, 'recall': 0.15126050420168066, 'f1': 0.2045454545454545, 'number': 119} | {'precision': 0.46368243243243246, 'recall': 0.5154929577464789, 'f1': 0.4882169853268119, 'number': 1065} | 0.3847 | 0.5113 | 0.4390 | 0.5706 |
|
65 |
+
| 0.8925 | 7.0 | 70 | 1.0616 | {'precision': 0.3607266435986159, 'recall': 0.515451174289246, 'f1': 0.42442748091603055, 'number': 809} | {'precision': 0.29473684210526313, 'recall': 0.23529411764705882, 'f1': 0.2616822429906542, 'number': 119} | {'precision': 0.4845360824742268, 'recall': 0.5737089201877934, 'f1': 0.52536543422184, 'number': 1065} | 0.4204 | 0.5299 | 0.4688 | 0.5874 |
|
66 |
+
| 0.8174 | 8.0 | 80 | 1.0694 | {'precision': 0.3473507148864592, 'recall': 0.5105067985166872, 'f1': 0.4134134134134134, 'number': 809} | {'precision': 0.3373493975903614, 'recall': 0.23529411764705882, 'f1': 0.2772277227722772, 'number': 119} | {'precision': 0.4794414274631497, 'recall': 0.5802816901408451, 'f1': 0.5250637213254036, 'number': 1065} | 0.4135 | 0.5314 | 0.4651 | 0.5893 |
|
67 |
+
| 0.7698 | 9.0 | 90 | 1.1272 | {'precision': 0.35641227380015733, 'recall': 0.5599505562422744, 'f1': 0.43557692307692303, 'number': 809} | {'precision': 0.3493975903614458, 'recall': 0.24369747899159663, 'f1': 0.2871287128712871, 'number': 119} | {'precision': 0.5008818342151675, 'recall': 0.5333333333333333, 'f1': 0.5165984538426557, 'number': 1065} | 0.4220 | 0.5268 | 0.4686 | 0.5817 |
|
68 |
+
| 0.7676 | 10.0 | 100 | 1.1380 | {'precision': 0.37153088630259623, 'recall': 0.5129789864029666, 'f1': 0.43094496365524404, 'number': 809} | {'precision': 0.29523809523809524, 'recall': 0.2605042016806723, 'f1': 0.2767857142857143, 'number': 119} | {'precision': 0.5185185185185185, 'recall': 0.5784037558685446, 'f1': 0.546826453617399, 'number': 1065} | 0.4407 | 0.5329 | 0.4824 | 0.5958 |
|
69 |
+
| 0.6932 | 11.0 | 110 | 1.1051 | {'precision': 0.387, 'recall': 0.4783683559950556, 'f1': 0.42786069651741293, 'number': 809} | {'precision': 0.37037037037037035, 'recall': 0.25210084033613445, 'f1': 0.3, 'number': 119} | {'precision': 0.4865061998541211, 'recall': 0.6262910798122066, 'f1': 0.5476190476190477, 'number': 1065} | 0.4421 | 0.5439 | 0.4877 | 0.6026 |
|
70 |
+
| 0.6856 | 12.0 | 120 | 1.1257 | {'precision': 0.38833181403828626, 'recall': 0.5265760197775031, 'f1': 0.44700944386149, 'number': 809} | {'precision': 0.3409090909090909, 'recall': 0.25210084033613445, 'f1': 0.2898550724637681, 'number': 119} | {'precision': 0.48674521354933725, 'recall': 0.6206572769953052, 'f1': 0.545604622368964, 'number': 1065} | 0.4392 | 0.5605 | 0.4925 | 0.6021 |
|
71 |
+
| 0.6592 | 13.0 | 130 | 1.1253 | {'precision': 0.39461883408071746, 'recall': 0.5438813349814586, 'f1': 0.4573804573804573, 'number': 809} | {'precision': 0.3614457831325301, 'recall': 0.25210084033613445, 'f1': 0.297029702970297, 'number': 119} | {'precision': 0.5112179487179487, 'recall': 0.5990610328638498, 'f1': 0.5516645049718979, 'number': 1065} | 0.4530 | 0.5559 | 0.4992 | 0.6066 |
|
72 |
+
| 0.6358 | 14.0 | 140 | 1.1420 | {'precision': 0.3906810035842294, 'recall': 0.5389369592088998, 'f1': 0.452987012987013, 'number': 809} | {'precision': 0.36904761904761907, 'recall': 0.2605042016806723, 'f1': 0.30541871921182273, 'number': 119} | {'precision': 0.5062597809076682, 'recall': 0.6075117370892019, 'f1': 0.5522833973538199, 'number': 1065} | 0.4496 | 0.5590 | 0.4983 | 0.6018 |
|
73 |
+
| 0.6263 | 15.0 | 150 | 1.1459 | {'precision': 0.3920704845814978, 'recall': 0.5500618046971569, 'f1': 0.45781893004115226, 'number': 809} | {'precision': 0.36363636363636365, 'recall': 0.2689075630252101, 'f1': 0.30917874396135264, 'number': 119} | {'precision': 0.5136876006441223, 'recall': 0.5990610328638498, 'f1': 0.553099263112267, 'number': 1065} | 0.4523 | 0.5595 | 0.5002 | 0.6006 |
|
74 |
+
|
75 |
+
|
76 |
+
### Framework versions
|
77 |
+
|
78 |
+
- Transformers 4.39.3
|
79 |
+
- Pytorch 2.2.2+cu121
|
80 |
+
- Datasets 2.18.0
|
81 |
+
- Tokenizers 0.15.2
|
logs/events.out.tfevents.1712281999.vibro-gpt-server1
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e19ee0c968187b30c6aea14f35965b02ca4655e1dc6f1775bd44ffc80d541814
|
3 |
+
size 15722
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 450558212
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ee99400ccabc29df601acd779274b7c942bd4263fc0bedb29e8ec909397d99af
|
3 |
size 450558212
|
preprocessor_config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_valid_processor_keys": [
|
3 |
+
"images",
|
4 |
+
"do_resize",
|
5 |
+
"size",
|
6 |
+
"resample",
|
7 |
+
"apply_ocr",
|
8 |
+
"ocr_lang",
|
9 |
+
"tesseract_config",
|
10 |
+
"return_tensors",
|
11 |
+
"data_format",
|
12 |
+
"input_data_format"
|
13 |
+
],
|
14 |
+
"apply_ocr": true,
|
15 |
+
"do_resize": true,
|
16 |
+
"image_processor_type": "LayoutLMv2ImageProcessor",
|
17 |
+
"ocr_lang": null,
|
18 |
+
"processor_class": "LayoutLMv2Processor",
|
19 |
+
"resample": 2,
|
20 |
+
"size": {
|
21 |
+
"height": 224,
|
22 |
+
"width": 224
|
23 |
+
},
|
24 |
+
"tesseract_config": ""
|
25 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"additional_special_tokens": [],
|
45 |
+
"apply_ocr": false,
|
46 |
+
"clean_up_tokenization_spaces": true,
|
47 |
+
"cls_token": "[CLS]",
|
48 |
+
"cls_token_box": [
|
49 |
+
0,
|
50 |
+
0,
|
51 |
+
0,
|
52 |
+
0
|
53 |
+
],
|
54 |
+
"do_basic_tokenize": true,
|
55 |
+
"do_lower_case": true,
|
56 |
+
"mask_token": "[MASK]",
|
57 |
+
"model_max_length": 512,
|
58 |
+
"never_split": null,
|
59 |
+
"only_label_first_subword": true,
|
60 |
+
"pad_token": "[PAD]",
|
61 |
+
"pad_token_box": [
|
62 |
+
0,
|
63 |
+
0,
|
64 |
+
0,
|
65 |
+
0
|
66 |
+
],
|
67 |
+
"pad_token_label": -100,
|
68 |
+
"processor_class": "LayoutLMv2Processor",
|
69 |
+
"sep_token": "[SEP]",
|
70 |
+
"sep_token_box": [
|
71 |
+
1000,
|
72 |
+
1000,
|
73 |
+
1000,
|
74 |
+
1000
|
75 |
+
],
|
76 |
+
"strip_accents": null,
|
77 |
+
"tokenize_chinese_chars": true,
|
78 |
+
"tokenizer_class": "LayoutLMv2Tokenizer",
|
79 |
+
"unk_token": "[UNK]"
|
80 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|