humming8one commited on
Commit
1193c50
·
verified ·
1 Parent(s): 0969401

End of training

Browse files
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/layoutlm-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - funsd
8
+ model-index:
9
+ - name: layoutlm-funsd
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # layoutlm-funsd
17
+
18
+ This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 1.1459
21
+ - Answer: {'precision': 0.3920704845814978, 'recall': 0.5500618046971569, 'f1': 0.45781893004115226, 'number': 809}
22
+ - Header: {'precision': 0.36363636363636365, 'recall': 0.2689075630252101, 'f1': 0.30917874396135264, 'number': 119}
23
+ - Question: {'precision': 0.5136876006441223, 'recall': 0.5990610328638498, 'f1': 0.553099263112267, 'number': 1065}
24
+ - Overall Precision: 0.4523
25
+ - Overall Recall: 0.5595
26
+ - Overall F1: 0.5002
27
+ - Overall Accuracy: 0.6006
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 3e-05
47
+ - train_batch_size: 16
48
+ - eval_batch_size: 8
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 15
53
+ - mixed_precision_training: Native AMP
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
58
+ |:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
59
+ | 1.7425 | 1.0 | 10 | 1.4798 | {'precision': 0.05438311688311688, 'recall': 0.08281829419035847, 'f1': 0.06565409113179814, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.2244367417677643, 'recall': 0.2431924882629108, 'f1': 0.2334384858044164, 'number': 1065} | 0.1366 | 0.1636 | 0.1489 | 0.3756 |
60
+ | 1.419 | 2.0 | 20 | 1.3167 | {'precision': 0.21116377040547657, 'recall': 0.4956736711990111, 'f1': 0.2961595273264402, 'number': 809} | {'precision': 0.08888888888888889, 'recall': 0.03361344537815126, 'f1': 0.048780487804878044, 'number': 119} | {'precision': 0.235467255334805, 'recall': 0.3004694835680751, 'f1': 0.264026402640264, 'number': 1065} | 0.2195 | 0.3638 | 0.2738 | 0.4192 |
61
+ | 1.2741 | 3.0 | 30 | 1.2387 | {'precision': 0.2594221105527638, 'recall': 0.5105067985166872, 'f1': 0.34402332361516036, 'number': 809} | {'precision': 0.2702702702702703, 'recall': 0.16806722689075632, 'f1': 0.2072538860103627, 'number': 119} | {'precision': 0.34717494894486045, 'recall': 0.4788732394366197, 'f1': 0.4025256511444357, 'number': 1065} | 0.3008 | 0.4732 | 0.3678 | 0.4611 |
62
+ | 1.147 | 4.0 | 40 | 1.1190 | {'precision': 0.26329113924050634, 'recall': 0.5142150803461063, 'f1': 0.34826287149434904, 'number': 809} | {'precision': 0.28, 'recall': 0.17647058823529413, 'f1': 0.21649484536082475, 'number': 119} | {'precision': 0.4030188679245283, 'recall': 0.5014084507042254, 'f1': 0.44686192468619246, 'number': 1065} | 0.3258 | 0.4872 | 0.3905 | 0.5426 |
63
+ | 1.0331 | 5.0 | 50 | 1.1534 | {'precision': 0.2893436838390967, 'recall': 0.5067985166872683, 'f1': 0.36837376460017973, 'number': 809} | {'precision': 0.2876712328767123, 'recall': 0.17647058823529413, 'f1': 0.21875000000000003, 'number': 119} | {'precision': 0.4215817694369973, 'recall': 0.5906103286384976, 'f1': 0.4919827923347672, 'number': 1065} | 0.3555 | 0.5319 | 0.4261 | 0.5476 |
64
+ | 0.9715 | 6.0 | 60 | 1.1035 | {'precision': 0.3210227272727273, 'recall': 0.5587144622991347, 'f1': 0.4077582318448354, 'number': 809} | {'precision': 0.3157894736842105, 'recall': 0.15126050420168066, 'f1': 0.2045454545454545, 'number': 119} | {'precision': 0.46368243243243246, 'recall': 0.5154929577464789, 'f1': 0.4882169853268119, 'number': 1065} | 0.3847 | 0.5113 | 0.4390 | 0.5706 |
65
+ | 0.8925 | 7.0 | 70 | 1.0616 | {'precision': 0.3607266435986159, 'recall': 0.515451174289246, 'f1': 0.42442748091603055, 'number': 809} | {'precision': 0.29473684210526313, 'recall': 0.23529411764705882, 'f1': 0.2616822429906542, 'number': 119} | {'precision': 0.4845360824742268, 'recall': 0.5737089201877934, 'f1': 0.52536543422184, 'number': 1065} | 0.4204 | 0.5299 | 0.4688 | 0.5874 |
66
+ | 0.8174 | 8.0 | 80 | 1.0694 | {'precision': 0.3473507148864592, 'recall': 0.5105067985166872, 'f1': 0.4134134134134134, 'number': 809} | {'precision': 0.3373493975903614, 'recall': 0.23529411764705882, 'f1': 0.2772277227722772, 'number': 119} | {'precision': 0.4794414274631497, 'recall': 0.5802816901408451, 'f1': 0.5250637213254036, 'number': 1065} | 0.4135 | 0.5314 | 0.4651 | 0.5893 |
67
+ | 0.7698 | 9.0 | 90 | 1.1272 | {'precision': 0.35641227380015733, 'recall': 0.5599505562422744, 'f1': 0.43557692307692303, 'number': 809} | {'precision': 0.3493975903614458, 'recall': 0.24369747899159663, 'f1': 0.2871287128712871, 'number': 119} | {'precision': 0.5008818342151675, 'recall': 0.5333333333333333, 'f1': 0.5165984538426557, 'number': 1065} | 0.4220 | 0.5268 | 0.4686 | 0.5817 |
68
+ | 0.7676 | 10.0 | 100 | 1.1380 | {'precision': 0.37153088630259623, 'recall': 0.5129789864029666, 'f1': 0.43094496365524404, 'number': 809} | {'precision': 0.29523809523809524, 'recall': 0.2605042016806723, 'f1': 0.2767857142857143, 'number': 119} | {'precision': 0.5185185185185185, 'recall': 0.5784037558685446, 'f1': 0.546826453617399, 'number': 1065} | 0.4407 | 0.5329 | 0.4824 | 0.5958 |
69
+ | 0.6932 | 11.0 | 110 | 1.1051 | {'precision': 0.387, 'recall': 0.4783683559950556, 'f1': 0.42786069651741293, 'number': 809} | {'precision': 0.37037037037037035, 'recall': 0.25210084033613445, 'f1': 0.3, 'number': 119} | {'precision': 0.4865061998541211, 'recall': 0.6262910798122066, 'f1': 0.5476190476190477, 'number': 1065} | 0.4421 | 0.5439 | 0.4877 | 0.6026 |
70
+ | 0.6856 | 12.0 | 120 | 1.1257 | {'precision': 0.38833181403828626, 'recall': 0.5265760197775031, 'f1': 0.44700944386149, 'number': 809} | {'precision': 0.3409090909090909, 'recall': 0.25210084033613445, 'f1': 0.2898550724637681, 'number': 119} | {'precision': 0.48674521354933725, 'recall': 0.6206572769953052, 'f1': 0.545604622368964, 'number': 1065} | 0.4392 | 0.5605 | 0.4925 | 0.6021 |
71
+ | 0.6592 | 13.0 | 130 | 1.1253 | {'precision': 0.39461883408071746, 'recall': 0.5438813349814586, 'f1': 0.4573804573804573, 'number': 809} | {'precision': 0.3614457831325301, 'recall': 0.25210084033613445, 'f1': 0.297029702970297, 'number': 119} | {'precision': 0.5112179487179487, 'recall': 0.5990610328638498, 'f1': 0.5516645049718979, 'number': 1065} | 0.4530 | 0.5559 | 0.4992 | 0.6066 |
72
+ | 0.6358 | 14.0 | 140 | 1.1420 | {'precision': 0.3906810035842294, 'recall': 0.5389369592088998, 'f1': 0.452987012987013, 'number': 809} | {'precision': 0.36904761904761907, 'recall': 0.2605042016806723, 'f1': 0.30541871921182273, 'number': 119} | {'precision': 0.5062597809076682, 'recall': 0.6075117370892019, 'f1': 0.5522833973538199, 'number': 1065} | 0.4496 | 0.5590 | 0.4983 | 0.6018 |
73
+ | 0.6263 | 15.0 | 150 | 1.1459 | {'precision': 0.3920704845814978, 'recall': 0.5500618046971569, 'f1': 0.45781893004115226, 'number': 809} | {'precision': 0.36363636363636365, 'recall': 0.2689075630252101, 'f1': 0.30917874396135264, 'number': 119} | {'precision': 0.5136876006441223, 'recall': 0.5990610328638498, 'f1': 0.553099263112267, 'number': 1065} | 0.4523 | 0.5595 | 0.5002 | 0.6006 |
74
+
75
+
76
+ ### Framework versions
77
+
78
+ - Transformers 4.39.3
79
+ - Pytorch 2.2.2+cu121
80
+ - Datasets 2.18.0
81
+ - Tokenizers 0.15.2
logs/events.out.tfevents.1712281999.vibro-gpt-server1 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c0407e0f27bf71d0555c93efcfac453ad5e9a510a301981b5eca47e622592ae6
3
- size 5053
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e19ee0c968187b30c6aea14f35965b02ca4655e1dc6f1775bd44ffc80d541814
3
+ size 15722
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d596f511f9cb22c16aa3fdc2081879a79a9e42c7c4f6ddbe7be13670e830aa68
3
  size 450558212
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee99400ccabc29df601acd779274b7c942bd4263fc0bedb29e8ec909397d99af
3
  size 450558212
preprocessor_config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_valid_processor_keys": [
3
+ "images",
4
+ "do_resize",
5
+ "size",
6
+ "resample",
7
+ "apply_ocr",
8
+ "ocr_lang",
9
+ "tesseract_config",
10
+ "return_tensors",
11
+ "data_format",
12
+ "input_data_format"
13
+ ],
14
+ "apply_ocr": true,
15
+ "do_resize": true,
16
+ "image_processor_type": "LayoutLMv2ImageProcessor",
17
+ "ocr_lang": null,
18
+ "processor_class": "LayoutLMv2Processor",
19
+ "resample": 2,
20
+ "size": {
21
+ "height": 224,
22
+ "width": 224
23
+ },
24
+ "tesseract_config": ""
25
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "apply_ocr": false,
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "[CLS]",
48
+ "cls_token_box": [
49
+ 0,
50
+ 0,
51
+ 0,
52
+ 0
53
+ ],
54
+ "do_basic_tokenize": true,
55
+ "do_lower_case": true,
56
+ "mask_token": "[MASK]",
57
+ "model_max_length": 512,
58
+ "never_split": null,
59
+ "only_label_first_subword": true,
60
+ "pad_token": "[PAD]",
61
+ "pad_token_box": [
62
+ 0,
63
+ 0,
64
+ 0,
65
+ 0
66
+ ],
67
+ "pad_token_label": -100,
68
+ "processor_class": "LayoutLMv2Processor",
69
+ "sep_token": "[SEP]",
70
+ "sep_token_box": [
71
+ 1000,
72
+ 1000,
73
+ 1000,
74
+ 1000
75
+ ],
76
+ "strip_accents": null,
77
+ "tokenize_chinese_chars": true,
78
+ "tokenizer_class": "LayoutLMv2Tokenizer",
79
+ "unk_token": "[UNK]"
80
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff