File size: 3,448 Bytes
a0f6bbc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
from torchaudio.models import Conformer
from torchaudio.models.rnnt import _TimeReduction
from transformers import PretrainedConfig, PreTrainedModel
import torch
import torchaudio
import math
import numpy as np
from torch import nn
from typing import List, Tuple, Optional
HF_CTC_VOCAB = [
'',
'a',
'b',
'c',
'd',
'e',
'f',
'g',
'h',
'i',
'j',
'k',
'l',
'm',
'n',
'o',
'p',
'q',
'r',
's',
't',
'u',
'v',
'w',
'x',
'y',
'z',
'0',
'1',
'2',
'3',
'4',
'5',
'6',
'7',
'8',
'9',
' ',
'?',
'_'
]
DECIBEL = 2 * 20 * math.log10(torch.iinfo(torch.int16).max)
GAIN = pow(10, 0.05 * DECIBEL)
spectrogram_transform = torchaudio.transforms.MelSpectrogram(
sample_rate=16000, n_fft=400, n_mels=80, hop_length=160)
def piecewise_linear_log(x):
x = x * GAIN
x[x > math.e] = torch.log(x[x > math.e])
x[x <= math.e] = x[x <= math.e] / math.e
return x
def melspectrogram(x):
if isinstance(x, np.ndarray):
x = torch.Tensor(x)
x = spectrogram_transform(x).transpose(1, 0)
return piecewise_linear_log(x)
class ConformerConfig(PretrainedConfig):
model_type = 'conformer'
class ConformerEncoder(PreTrainedModel):
config_class = ConformerConfig
def __init__(
self,
config,
) -> None:
super().__init__(config)
self.time_reduction = _TimeReduction(config.time_reduction_stride)
self.input_linear = torch.nn.Linear(
config.input_dim * config.time_reduction_stride,
config.conformer_input_dim)
self.conformer = Conformer(
num_layers=config.conformer_num_layers,
input_dim=config.conformer_input_dim,
ffn_dim=config.conformer_ffn_dim,
num_heads=config.conformer_num_heads,
depthwise_conv_kernel_size=config.conformer_depthwise_conv_kernel_size,
dropout=config.conformer_dropout,
use_group_norm=True,
convolution_first=True,
)
self.output_linear = torch.nn.Linear(config.conformer_input_dim, config.output_dim)
def forward(self, inputs, lengths, labels=None):
time_reduction_out, time_reduction_lengths = self.time_reduction(inputs, lengths)
input_linear_out = self.input_linear(time_reduction_out)
x, input_lengths = self.conformer(input_linear_out, time_reduction_lengths)
logits = self.output_linear(x)
loss = None
if labels is not None:
labels_mask = labels >= 0
target_lengths = labels_mask.sum(-1)
flattened_targets = labels.masked_select(labels_mask)
log_probs = nn.functional.log_softmax(
logits,
dim=-1,
dtype=torch.float32
).transpose(0, 1)
with torch.backends.cudnn.flags(enabled=False):
loss = nn.functional.ctc_loss(
log_probs,
flattened_targets,
input_lengths,
target_lengths,
blank=self.config.pad_token_id,
reduction=self.config.ctc_loss_reduction,
zero_infinity=self.config.ctc_zero_infinity,
)
output = (logits, input_lengths)
return ((loss,) + output) if loss is not None else output
|