add clap modeling
Browse files- clap_modeling.py +229 -0
- config.json +3 -1
- tokenizer_config.json +3 -0
clap_modeling.py
ADDED
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MIT License
|
2 |
+
|
3 |
+
# Copyright (c) 2024 Hustcw
|
4 |
+
|
5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
7 |
+
# in the Software without restriction, including without limitation the rights
|
8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
10 |
+
# furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
# The above copyright notice and this permission notice shall be included in all
|
13 |
+
# copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
# SOFTWARE.
|
22 |
+
|
23 |
+
import torch
|
24 |
+
import torch.utils.checkpoint
|
25 |
+
from torch import nn
|
26 |
+
from typing import Optional
|
27 |
+
import torch.nn.functional as F
|
28 |
+
|
29 |
+
from transformers.models.roformer.modeling_roformer import (
|
30 |
+
RoFormerEmbeddings,
|
31 |
+
RoFormerModel,
|
32 |
+
RoFormerEncoder,
|
33 |
+
RoFormerLayer,
|
34 |
+
RoFormerAttention,
|
35 |
+
RoFormerIntermediate,
|
36 |
+
RoFormerOutput,
|
37 |
+
RoFormerSelfAttention,
|
38 |
+
RoFormerPreTrainedModel
|
39 |
+
)
|
40 |
+
|
41 |
+
from transformers.models.mpnet.modeling_mpnet import MPNetModel
|
42 |
+
|
43 |
+
from transformers import MPNetTokenizerFast, BatchEncoding
|
44 |
+
|
45 |
+
class AsmTokenizer(MPNetTokenizerFast):
|
46 |
+
|
47 |
+
@property
|
48 |
+
def pad_token_type_id(self) -> int:
|
49 |
+
"""
|
50 |
+
`int`: Id of the padding token type in the vocabulary.
|
51 |
+
"""
|
52 |
+
return self.pad_token_id
|
53 |
+
|
54 |
+
def tokenize_function(self, function):
|
55 |
+
total_len = 0
|
56 |
+
tokenized_functions = {"token": [], "instr": []}
|
57 |
+
for key, value in function.items():
|
58 |
+
tokens = self.tokenize(value.replace(',', ''), max_length=20, truncation=True, add_special_tokens=False) # set max token for a instruction
|
59 |
+
instr_index = "INSTR" + key
|
60 |
+
instructions = [instr_index] * len(tokens)
|
61 |
+
tokenized_functions["token"].extend(tokens)
|
62 |
+
tokenized_functions["instr"].extend(instructions)
|
63 |
+
total_len += len(tokens)
|
64 |
+
if total_len > self.model_max_length:
|
65 |
+
tokenized_functions['token'] = tokenized_functions['token'][:self.model_max_length]
|
66 |
+
tokenized_functions['instr'] = tokenized_functions['instr'][:self.model_max_length]
|
67 |
+
break
|
68 |
+
return tokenized_functions
|
69 |
+
|
70 |
+
def encode_function(self, function):
|
71 |
+
tokenized_functions = self.tokenize_function(function)
|
72 |
+
token_ids = self.convert_tokens_to_ids(tokenized_functions["token"])
|
73 |
+
instr_ids = self.convert_tokens_to_ids(tokenized_functions["instr"])
|
74 |
+
return BatchEncoding({
|
75 |
+
"input_ids": token_ids,
|
76 |
+
"attention_mask": [1] * len(token_ids),
|
77 |
+
"token_type_ids": instr_ids,
|
78 |
+
})
|
79 |
+
|
80 |
+
@property
|
81 |
+
def vocab_size(self) -> int:
|
82 |
+
return len(self.vocab)
|
83 |
+
|
84 |
+
class JRoFormerEmbeddings(RoFormerEmbeddings):
|
85 |
+
"""Construct the embeddings from word and token_type embeddings."""
|
86 |
+
|
87 |
+
def __init__(self, config):
|
88 |
+
super().__init__(config)
|
89 |
+
self.word_embeddings = nn.Embedding(
|
90 |
+
config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id
|
91 |
+
)
|
92 |
+
self.token_type_embeddings = self.word_embeddings
|
93 |
+
|
94 |
+
|
95 |
+
class JRoFormerSelfAttention(RoFormerSelfAttention):
|
96 |
+
def __init__(self, config):
|
97 |
+
super().__init__(config)
|
98 |
+
self.query = nn.Linear(
|
99 |
+
config.hidden_size, self.all_head_size, bias=config.use_bias
|
100 |
+
)
|
101 |
+
self.key = nn.Linear(
|
102 |
+
config.hidden_size, self.all_head_size, bias=config.use_bias
|
103 |
+
)
|
104 |
+
self.value = nn.Linear(
|
105 |
+
config.hidden_size, self.all_head_size, bias=config.use_bias
|
106 |
+
)
|
107 |
+
|
108 |
+
|
109 |
+
class JRoFormerAttention(RoFormerAttention):
|
110 |
+
def __init__(self, config):
|
111 |
+
super().__init__(config)
|
112 |
+
self.self = JRoFormerSelfAttention(config)
|
113 |
+
|
114 |
+
|
115 |
+
class JRoFormerLayer(RoFormerLayer):
|
116 |
+
def __init__(self, config):
|
117 |
+
super().__init__(config)
|
118 |
+
self.attention = JRoFormerAttention(config)
|
119 |
+
self.is_decoder = config.is_decoder
|
120 |
+
self.add_cross_attention = config.add_cross_attention
|
121 |
+
if self.add_cross_attention:
|
122 |
+
if not self.is_decoder:
|
123 |
+
raise ValueError(
|
124 |
+
f"{self} should be used as a decoder model if cross attention is added"
|
125 |
+
)
|
126 |
+
self.crossattention = RoFormerAttention(config)
|
127 |
+
self.intermediate = RoFormerIntermediate(config)
|
128 |
+
self.output = RoFormerOutput(config)
|
129 |
+
|
130 |
+
|
131 |
+
class JRoFormerEncoder(RoFormerEncoder):
|
132 |
+
def __init__(self, config):
|
133 |
+
super().__init__(config)
|
134 |
+
self.layer = nn.ModuleList(
|
135 |
+
[JRoFormerLayer(config) for _ in range(config.num_hidden_layers)]
|
136 |
+
)
|
137 |
+
|
138 |
+
|
139 |
+
class JRoFormerModel(RoFormerModel):
|
140 |
+
def __init__(self, config):
|
141 |
+
super().__init__(config)
|
142 |
+
self.config = config
|
143 |
+
self.embeddings = JRoFormerEmbeddings(config)
|
144 |
+
|
145 |
+
if config.embedding_size != config.hidden_size:
|
146 |
+
self.embeddings_project = nn.Linear(
|
147 |
+
config.embedding_size, config.hidden_size
|
148 |
+
)
|
149 |
+
|
150 |
+
self.encoder = JRoFormerEncoder(config)
|
151 |
+
|
152 |
+
# Initialize weights and apply final processing
|
153 |
+
self.post_init()
|
154 |
+
|
155 |
+
class AsmEncoder(RoFormerPreTrainedModel):
|
156 |
+
def __init__(self, config):
|
157 |
+
super().__init__(config)
|
158 |
+
self.config = config
|
159 |
+
self.jroformer = JRoFormerModel(config)
|
160 |
+
self.projection = nn.Linear(config.hidden_size, config.hidden_size)
|
161 |
+
|
162 |
+
def forward(
|
163 |
+
self,
|
164 |
+
input_ids: Optional[torch.LongTensor] = None,
|
165 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
166 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
167 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
168 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
169 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
170 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
171 |
+
output_attentions: Optional[bool] = None,
|
172 |
+
output_hidden_states: Optional[bool] = None,
|
173 |
+
return_dict: Optional[bool] = None,
|
174 |
+
):
|
175 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
176 |
+
|
177 |
+
outputs = self.jroformer(
|
178 |
+
input_ids,
|
179 |
+
attention_mask=attention_mask,
|
180 |
+
token_type_ids=token_type_ids,
|
181 |
+
head_mask=head_mask,
|
182 |
+
inputs_embeds=inputs_embeds,
|
183 |
+
encoder_hidden_states=encoder_hidden_states,
|
184 |
+
encoder_attention_mask=encoder_attention_mask,
|
185 |
+
output_attentions=output_attentions,
|
186 |
+
output_hidden_states=output_hidden_states,
|
187 |
+
return_dict=return_dict,
|
188 |
+
)
|
189 |
+
|
190 |
+
token_embeddings = outputs[0]
|
191 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).to(token_embeddings.dtype)
|
192 |
+
asm_embedding = torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
193 |
+
asm_embedding = self.projection(asm_embedding)
|
194 |
+
asm_embedding = F.normalize(asm_embedding, p=2, dim=1)
|
195 |
+
|
196 |
+
return asm_embedding
|
197 |
+
|
198 |
+
class TextEncoder(MPNetModel):
|
199 |
+
def __init__(self, config, add_pooling_layer=True):
|
200 |
+
super().__init__(config, add_pooling_layer=add_pooling_layer)
|
201 |
+
|
202 |
+
def forward(
|
203 |
+
self,
|
204 |
+
input_ids: Optional[torch.LongTensor] = None,
|
205 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
206 |
+
position_ids: Optional[torch.LongTensor] = None,
|
207 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
208 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
209 |
+
output_attentions: Optional[bool] = None,
|
210 |
+
output_hidden_states: Optional[bool] = None,
|
211 |
+
return_dict: Optional[bool] = None,
|
212 |
+
**kwargs,
|
213 |
+
):
|
214 |
+
output = super().forward(
|
215 |
+
input_ids=input_ids,
|
216 |
+
attention_mask=attention_mask,
|
217 |
+
position_ids=position_ids,
|
218 |
+
head_mask=head_mask,
|
219 |
+
inputs_embeds=inputs_embeds,
|
220 |
+
output_attentions=output_attentions,
|
221 |
+
output_hidden_states=output_hidden_states,
|
222 |
+
return_dict=return_dict,
|
223 |
+
**kwargs,
|
224 |
+
)
|
225 |
+
token_embeddings = output[0]
|
226 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
227 |
+
text_embedding = torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
228 |
+
text_embedding = F.normalize(text_embedding, p=2, dim=1)
|
229 |
+
return text_embedding
|
config.json
CHANGED
@@ -1,8 +1,10 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "./models/asm-encoder",
|
3 |
"architectures": [
|
4 |
"AsmEncoder"
|
5 |
],
|
|
|
|
|
|
|
6 |
"attention_probs_dropout_prob": 0.1,
|
7 |
"embedding_size": 768,
|
8 |
"hidden_act": "gelu",
|
|
|
1 |
{
|
|
|
2 |
"architectures": [
|
3 |
"AsmEncoder"
|
4 |
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoModel": "clap_modeling.AsmEncoder"
|
7 |
+
},
|
8 |
"attention_probs_dropout_prob": 0.1,
|
9 |
"embedding_size": 768,
|
10 |
"hidden_act": "gelu",
|
tokenizer_config.json
CHANGED
@@ -1,4 +1,7 @@
|
|
1 |
{
|
|
|
|
|
|
|
2 |
"added_tokens_decoder": {
|
3 |
"0": {
|
4 |
"content": "<s>",
|
|
|
1 |
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoTokenizer": ["clap_modeling.AsmTokenizer", null]
|
4 |
+
},
|
5 |
"added_tokens_decoder": {
|
6 |
"0": {
|
7 |
"content": "<s>",
|