metadata
base_model: huudan123/model_stage2
datasets: []
language: []
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:5749
- loss:CosineSimilarityLoss
widget:
- source_sentence: trắng và nâu đang chạy nhanh qua đám cỏ.
sentences:
- Một chiếc máy bay trên bầu trời.
- trắng lớn đang chạy trên cỏ.
- Hai con đại bàng đang đậu trên cành cây.
- source_sentence: >-
Chúng tôi đang di chuyển \"... liên quan đến khung nghỉ vũ trụ comoving
... với tốc độ khoảng 371 km/s về phía chòm sao Sư Tử\".
sentences:
- Một bức ảnh đen trắng của một người đàn ông đứng cạnh xe buýt.
- Một vận động viên quần vợt ở giữa trận đấu.
- Không có 'tĩnh' không liên quan đến một số đối tượng khác.
- source_sentence: Một người đàn ông đang trượt băng xuống cầu thang.
sentences:
- >-
Tôi đồng ý với những người khác rằng theo dõi thời gian của bạn là cơ
bản cho giải pháp.
- Người đàn ông đang trượt tuyết xuống một ngọn đồi tuyết.
- Một đứa bé đang cười.
- source_sentence: >-
Theo trang web này, cường độ khả kiến cực đại sẽ vào khoảng 10,5 vào
khoảng ngày 2/2.
sentences:
- Trẻ em nhìn một con cừu.
- >-
Dữ liệu AAVSO dường như chỉ ra rằng nó có thể đã đạt đỉnh, vào khoảng
10,5 (trực quan).
- Chim đen đứng trên bê tông.
- source_sentence: Tôi có thể nghĩ ra ba yếu tố chính là những phỏng đoán khá logic.
sentences:
- Những ở một mình trong rừng.
- Cô gái đang đứng trước cánh cửa mở của xe buýt.
- >-
Đã có khá nhiều nghiên cứu trong bóng đá / bóng đá thảo luận về lợi thế
sân nhà.
model-index:
- name: SentenceTransformer based on huudan123/model_stage2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts evaluator
type: sts-evaluator
metrics:
- type: pearson_cosine
value: 0.8444675896278073
name: Pearson Cosine
- type: spearman_cosine
value: 0.8433102414270872
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8322074189093971
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8372438919154898
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8330146892118017
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.838262655985479
name: Spearman Euclidean
- type: pearson_dot
value: 0.8324128204608153
name: Pearson Dot
- type: spearman_dot
value: 0.8309364918730088
name: Spearman Dot
- type: pearson_max
value: 0.8444675896278073
name: Pearson Max
- type: spearman_max
value: 0.8433102414270872
name: Spearman Max
SentenceTransformer based on huudan123/model_stage2
This is a sentence-transformers model finetuned from huudan123/model_stage2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: huudan123/model_stage2
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("huudan123/model_stage3")
# Run inference
sentences = [
'Tôi có thể nghĩ ra ba yếu tố chính là những phỏng đoán khá logic.',
'Đã có khá nhiều nghiên cứu trong bóng đá / bóng đá thảo luận về lợi thế sân nhà.',
'Cô gái đang đứng trước cánh cửa mở của xe buýt.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-evaluator
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.8445 |
spearman_cosine | 0.8433 |
pearson_manhattan | 0.8322 |
spearman_manhattan | 0.8372 |
pearson_euclidean | 0.833 |
spearman_euclidean | 0.8383 |
pearson_dot | 0.8324 |
spearman_dot | 0.8309 |
pearson_max | 0.8445 |
spearman_max | 0.8433 |
Training Details
Training Hyperparameters
Non-Default Hyperparameters
overwrite_output_dir
: Trueeval_strategy
: epochper_device_train_batch_size
: 128per_device_eval_batch_size
: 128learning_rate
: 2e-05num_train_epochs
: 15warmup_ratio
: 0.1fp16
: Trueload_best_model_at_end
: Truegradient_checkpointing
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Truedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 128per_device_eval_batch_size
: 128per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 15max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Truegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | sts-evaluator_spearman_max |
---|---|---|---|---|
0 | 0 | - | - | 0.6240 |
1.0 | 45 | - | 0.0395 | 0.7906 |
2.0 | 90 | - | 0.0315 | 0.8277 |
3.0 | 135 | - | 0.0297 | 0.8385 |
4.0 | 180 | - | 0.0296 | 0.8392 |
5.0 | 225 | - | 0.0286 | 0.8426 |
6.0 | 270 | - | 0.0295 | 0.8412 |
7.0 | 315 | - | 0.0290 | 0.8418 |
8.0 | 360 | - | 0.0289 | 0.8426 |
9.0 | 405 | - | 0.0286 | 0.8437 |
10.0 | 450 | - | 0.0288 | 0.8433 |
11.0 | 495 | - | 0.0288 | 0.8429 |
11.1111 | 500 | 0.0204 | - | - |
12.0 | 540 | - | 0.0289 | 0.8433 |
13.0 | 585 | - | 0.0286 | 0.8439 |
14.0 | 630 | - | 0.0286 | 0.8433 |
15.0 | 675 | - | 0.0287 | 0.8433 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.33.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}