File size: 10,737 Bytes
018b585 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from datasets import load_dataset
from torch.utils.data import Dataset, DataLoader
from transformers import GPT2Tokenizer
import math
from einops import einsum
from tqdm import tqdm
from einops.layers.torch import Rearrange
import os
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data.distributed import DistributedSampler
def exists(v):
return v is not None
def default(v, d):
return v if exists(v) else d
class RMSNorm(nn.Module):
def __init__(self, dim):
super().__init__()
self.scale = dim ** 0.5
self.gamma = nn.Parameter(torch.ones(dim))
def forward(self, x):
return F.normalize(x, dim=-1) * self.scale * self.gamma
class ProductKeyMemory(nn.Module):
def __init__(self, dim, num_keys):
super().__init__()
self.dim = dim
self.num_keys = num_keys
self.keys = nn.Parameter(torch.randn(num_keys, dim // 2))
def forward(self, query):
query = query.view(query.shape[0], 2, -1)
dots = torch.einsum('bkd,nd->bkn', query, self.keys)
return dots.view(query.shape[0], -1)
class PEER(nn.Module):
def __init__(
self,
dim,
*,
heads=8,
num_experts=1_000_000,
num_experts_per_head=16,
activation=nn.GELU,
dim_key=None,
product_key_topk=None,
separate_embed_per_head=False,
pre_rmsnorm=False,
dropout=0.
):
super().__init__()
self.norm = RMSNorm(dim) if pre_rmsnorm else nn.Identity()
self.heads = heads
self.separate_embed_per_head = separate_embed_per_head
self.num_experts = num_experts
num_expert_sets = heads if separate_embed_per_head else 1
self.weight_down_embed = nn.Embedding(num_experts * num_expert_sets, dim)
self.weight_up_embed = nn.Embedding(num_experts * num_expert_sets, dim)
self.activation = activation()
assert (num_experts ** 0.5).is_integer(), '`num_experts` needs to be a square'
assert (dim % 2) == 0, 'feature dimension should be divisible by 2'
dim_key = default(dim_key, dim // 2)
self.num_keys = int(num_experts ** 0.5)
self.to_queries = nn.Sequential(
nn.Linear(dim, dim_key * heads * 2, bias=False),
Rearrange('b n (p h d) -> p b n h d', p=2, h=heads)
)
self.product_key_topk = default(product_key_topk, num_experts_per_head)
self.num_experts_per_head = num_experts_per_head
self.keys = nn.Parameter(torch.randn(heads, self.num_keys, 2, dim_key))
self.dropout = nn.Dropout(dropout)
def forward(self, x):
x = self.norm(x)
queries = self.to_queries(x)
sim = einsum(queries, self.keys, 'p b n h d, h k p d -> p b n h k')
(scores_x, scores_y), (indices_x, indices_y) = [s.topk(self.product_key_topk, dim=-1) for s in sim]
all_scores = scores_x.unsqueeze(-1) + scores_y.unsqueeze(-2)
all_indices = indices_x.unsqueeze(-1) * self.num_keys + indices_y.unsqueeze(-2)
all_scores = all_scores.view(*all_scores.shape[:-2], -1)
all_indices = all_indices.view(*all_indices.shape[:-2], -1)
scores, pk_indices = all_scores.topk(self.num_experts_per_head, dim=-1)
indices = all_indices.gather(-1, pk_indices)
if self.separate_embed_per_head:
head_expert_offsets = torch.arange(self.heads, device=x.device) * self.num_experts
indices = indices + head_expert_offsets.view(1, 1, -1, 1)
weights_down = self.weight_down_embed(pk_indices)
weights_up = self.weight_up_embed(pk_indices)
x = einsum(x, weights_down, 'b n d, b n h k d -> b n h k')
x = self.activation(x)
x = self.dropout(x)
x = x * F.softmax(scores, dim=-1)
x = einsum(x, weights_up, 'b n h k, b n h k d -> b n d')
return x
class TransformerBlock(nn.Module):
def __init__(self, dim, num_heads, num_experts, num_experts_per_head, dropout=0.1):
super(TransformerBlock, self).__init__()
self.attention = nn.MultiheadAttention(dim, num_heads)
self.norm1 = nn.LayerNorm(dim)
self.norm2 = nn.LayerNorm(dim)
self.peer1 = PEER(dim, heads=num_heads, num_experts=num_experts, num_experts_per_head=num_experts_per_head)
self.peer2 = PEER(dim, heads=num_heads, num_experts=num_experts, num_experts_per_head=num_experts_per_head)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
attn_output, _ = self.attention(x, x, x)
x = x + self.dropout(attn_output)
x = self.norm1(x)
peer_output1 = self.peer1(x)
peer_output2 = self.peer2(F.gelu(peer_output1))
x = x + self.dropout(peer_output2)
x = self.norm2(x)
return x
class PEERLanguageModel(nn.Module):
def __init__(self, vocab_size, dim, num_layers, num_heads, num_experts, top_k):
super().__init__()
self.token_embedding = nn.Embedding(vocab_size, dim)
self.position_embedding = nn.Embedding(512, dim)
self.layers = nn.ModuleList([TransformerBlock(dim, num_heads, num_experts, top_k) for _ in range(num_layers)])
self.layer_norm = nn.LayerNorm(dim)
self.lm_head = nn.Linear(dim, vocab_size, bias=False)
def forward(self, x):
b, s = x.shape
positions = torch.arange(s, device=x.device).unsqueeze(0).expand(b, s)
x = self.token_embedding(x) + self.position_embedding(positions)
for layer in self.layers:
x = layer(x)
x = self.layer_norm(x)
logits = self.lm_head(x)
return logits
class PileDataset(Dataset):
def __init__(self, file_path, tokenizer, split='train', max_length=512):
self.tokenizer = tokenizer
self.max_length = max_length
self.data = load_dataset(file_path, "wikitext-103-raw-v1", split=split)
self.data = self.data.filter(lambda x: len(x['text']) > 0)
if split == "train":
self.data = self.data.select(range(0,300000))
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
text = self.data[idx]['text']
encoding = self.tokenizer(text, max_length=self.max_length, truncation=True, padding='max_length', return_tensors='pt')
return encoding['input_ids'].squeeze(), encoding['attention_mask'].squeeze()
def train(model, train_loader, optimizer, device):
model.train()
total_loss = 0
for batch in tqdm(train_loader, disable=not torch.distributed.get_rank() == 0):
input_ids, attention_mask = batch
input_ids, attention_mask = input_ids.to(device), attention_mask.to(device)
optimizer.zero_grad()
# Shift the input_ids and attention_mask to create targets
targets = input_ids[:, 1:].contiguous()
input_ids = input_ids[:, :-1].contiguous()
attention_mask = attention_mask[:, :-1].contiguous()
outputs = model(input_ids)
# Reshape outputs and targets for loss calculation
outputs = outputs.view(-1, outputs.size(-1))
targets = targets.view(-1)
# Calculate loss (ignore padding token, usually 0)
loss = F.cross_entropy(outputs, targets, ignore_index=0)
loss.backward()
optimizer.step()
total_loss += loss.item()
return total_loss / len(train_loader)
def validate(model, val_loader, device):
model.eval()
total_loss = 0
with torch.no_grad():
for batch in tqdm(val_loader):
input_ids, attention_mask = batch
input_ids, attention_mask = input_ids.to(device), attention_mask.to(device)
outputs = model(input_ids)
loss = F.cross_entropy(outputs.view(-1, outputs.size(-1)), input_ids.view(-1), ignore_index=0)
total_loss += loss.item()
return total_loss / len(val_loader)
# main execution
if __name__ == "__main__":
# Initialize distributed environment
dist.init_process_group(backend='nccl')
local_rank = int(os.environ["LOCAL_RANK"])
torch.cuda.set_device(local_rank)
device = torch.device("cuda", local_rank)
# Hyperparameters
vocab_size = 50257 # GPT-2 tokenizer vocab size
dim = 256
num_layers = 8
num_heads = 8
num_experts = 512 * 512 # 1M experts
top_k = 16
batch_size = 6
num_epochs = 10
learning_rate = 1e-4
# Initialize tokenizer and model
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
tokenizer.pad_token = tokenizer.eos_token
model = PEERLanguageModel(vocab_size, dim, num_layers, num_heads, num_experts, top_k).to(device)
# Wrap the model with DistributedDataParallel
model = DDP(model, device_ids=[local_rank], output_device=local_rank)
# Load Pile dataset
train_dataset = PileDataset('Salesforce/wikitext', tokenizer, split='train')
val_dataset = PileDataset('Salesforce/wikitext', tokenizer, split='validation')
# Use DistributedSampler for the training data
train_sampler = DistributedSampler(train_dataset)
train_loader = DataLoader(train_dataset, batch_size=batch_size, sampler=train_sampler)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
# Optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
if local_rank == 0:
print("Number of parameters:", sum(p.numel() for p in model.parameters()))
# Training and validation loop
best_val_loss = float('inf')
for epoch in range(num_epochs):
train_sampler.set_epoch(epoch)
if local_rank == 0:
print(f"Epoch Training {epoch+1}/{num_epochs}")
train_loss = train(model, train_loader, optimizer, device)
if local_rank == 0:
print(f"Epoch Validation {epoch+1}/{num_epochs}")
val_loss = validate(model, val_loader, device)
print(f"Epoch {epoch+1}/{num_epochs}, Train Loss: {train_loss:.4f}, Val Loss: {val_loss:.4f}")
# Save the best model
if val_loss < best_val_loss:
best_val_loss = val_loss
torch.save(model.state_dict(), 'best_peer_language_model.pth')
# Save the final trained model
if local_rank == 0:
torch.save(model.state_dict(), 'final_peer_language_model.pth')
# Clean up
dist.destroy_process_group()
|