File size: 10,737 Bytes
018b585
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import torch
import torch.nn as nn
import torch.nn.functional as F
from datasets import load_dataset
from torch.utils.data import Dataset, DataLoader
from transformers import GPT2Tokenizer
import math
from einops import einsum
from tqdm import tqdm 
from einops.layers.torch import Rearrange

import os
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data.distributed import DistributedSampler

def exists(v):
    return v is not None

def default(v, d):
    return v if exists(v) else d

class RMSNorm(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.scale = dim ** 0.5
        self.gamma = nn.Parameter(torch.ones(dim))

    def forward(self, x):
        return F.normalize(x, dim=-1) * self.scale * self.gamma

class ProductKeyMemory(nn.Module):
    def __init__(self, dim, num_keys):
        super().__init__()
        self.dim = dim
        self.num_keys = num_keys
        self.keys = nn.Parameter(torch.randn(num_keys, dim // 2))
        
    def forward(self, query):
        query = query.view(query.shape[0], 2, -1)
        dots = torch.einsum('bkd,nd->bkn', query, self.keys)
        return dots.view(query.shape[0], -1)

class PEER(nn.Module):
    def __init__(
        self,
        dim,
        *,
        heads=8,
        num_experts=1_000_000,
        num_experts_per_head=16,
        activation=nn.GELU,
        dim_key=None,
        product_key_topk=None,
        separate_embed_per_head=False,
        pre_rmsnorm=False,
        dropout=0.
    ):
        super().__init__()

        self.norm = RMSNorm(dim) if pre_rmsnorm else nn.Identity()

        self.heads = heads
        self.separate_embed_per_head = separate_embed_per_head
        self.num_experts = num_experts

        num_expert_sets = heads if separate_embed_per_head else 1

        self.weight_down_embed = nn.Embedding(num_experts * num_expert_sets, dim)
        self.weight_up_embed = nn.Embedding(num_experts * num_expert_sets, dim)

        self.activation = activation()

        assert (num_experts ** 0.5).is_integer(), '`num_experts` needs to be a square'
        assert (dim % 2) == 0, 'feature dimension should be divisible by 2'

        dim_key = default(dim_key, dim // 2)
        self.num_keys = int(num_experts ** 0.5)

        self.to_queries = nn.Sequential(
            nn.Linear(dim, dim_key * heads * 2, bias=False),
            Rearrange('b n (p h d) -> p b n h d', p=2, h=heads)
        )

        self.product_key_topk = default(product_key_topk, num_experts_per_head)
        self.num_experts_per_head = num_experts_per_head

        self.keys = nn.Parameter(torch.randn(heads, self.num_keys, 2, dim_key))

        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        x = self.norm(x)

        queries = self.to_queries(x)

        sim = einsum(queries, self.keys, 'p b n h d, h k p d -> p b n h k')

        (scores_x, scores_y), (indices_x, indices_y) = [s.topk(self.product_key_topk, dim=-1) for s in sim]

        all_scores = scores_x.unsqueeze(-1) + scores_y.unsqueeze(-2)
        all_indices = indices_x.unsqueeze(-1) * self.num_keys + indices_y.unsqueeze(-2)

        all_scores = all_scores.view(*all_scores.shape[:-2], -1)
        all_indices = all_indices.view(*all_indices.shape[:-2], -1)

        scores, pk_indices = all_scores.topk(self.num_experts_per_head, dim=-1)
        indices = all_indices.gather(-1, pk_indices)

        if self.separate_embed_per_head:
            head_expert_offsets = torch.arange(self.heads, device=x.device) * self.num_experts
            indices = indices + head_expert_offsets.view(1, 1, -1, 1)

        weights_down = self.weight_down_embed(pk_indices)
        weights_up = self.weight_up_embed(pk_indices)

        x = einsum(x, weights_down, 'b n d, b n h k d -> b n h k')

        x = self.activation(x)
        x = self.dropout(x)

        x = x * F.softmax(scores, dim=-1)

        x = einsum(x, weights_up, 'b n h k, b n h k d -> b n d')

        return x

class TransformerBlock(nn.Module):
    def __init__(self, dim, num_heads, num_experts, num_experts_per_head, dropout=0.1):
        super(TransformerBlock, self).__init__()
        
        self.attention = nn.MultiheadAttention(dim, num_heads)
        self.norm1 = nn.LayerNorm(dim)
        self.norm2 = nn.LayerNorm(dim)
        
        self.peer1 = PEER(dim, heads=num_heads, num_experts=num_experts, num_experts_per_head=num_experts_per_head)
        self.peer2 = PEER(dim, heads=num_heads, num_experts=num_experts, num_experts_per_head=num_experts_per_head)
        
        self.dropout = nn.Dropout(dropout)
        
    def forward(self, x):
        attn_output, _ = self.attention(x, x, x)
        x = x + self.dropout(attn_output)
        x = self.norm1(x)
        
        peer_output1 = self.peer1(x)
        peer_output2 = self.peer2(F.gelu(peer_output1))
        x = x + self.dropout(peer_output2)
        x = self.norm2(x)
        
        return x

class PEERLanguageModel(nn.Module):
    def __init__(self, vocab_size, dim, num_layers, num_heads, num_experts, top_k):
        super().__init__()
        self.token_embedding = nn.Embedding(vocab_size, dim)
        self.position_embedding = nn.Embedding(512, dim)  
        self.layers = nn.ModuleList([TransformerBlock(dim, num_heads, num_experts, top_k) for _ in range(num_layers)])
        self.layer_norm = nn.LayerNorm(dim)
        self.lm_head = nn.Linear(dim, vocab_size, bias=False)
        
    def forward(self, x):
        b, s = x.shape
        positions = torch.arange(s, device=x.device).unsqueeze(0).expand(b, s)
        
        x = self.token_embedding(x) + self.position_embedding(positions)
        
        for layer in self.layers:
            x = layer(x)
        
        x = self.layer_norm(x)
        logits = self.lm_head(x)
        return logits

class PileDataset(Dataset):
    def __init__(self, file_path, tokenizer, split='train', max_length=512):
        self.tokenizer = tokenizer
        self.max_length = max_length
        
        self.data = load_dataset(file_path, "wikitext-103-raw-v1", split=split)
        self.data = self.data.filter(lambda x: len(x['text']) > 0)
        if split == "train":
            self.data = self.data.select(range(0,300000))
        
    def __len__(self):
        return len(self.data)
    
    def __getitem__(self, idx):
        text = self.data[idx]['text']
        encoding = self.tokenizer(text, max_length=self.max_length, truncation=True, padding='max_length', return_tensors='pt')
        return encoding['input_ids'].squeeze(), encoding['attention_mask'].squeeze()


def train(model, train_loader, optimizer, device):
    model.train()
    total_loss = 0
    for batch in tqdm(train_loader, disable=not torch.distributed.get_rank() == 0):
        input_ids, attention_mask = batch
        input_ids, attention_mask = input_ids.to(device), attention_mask.to(device)
        
        optimizer.zero_grad()
        
        # Shift the input_ids and attention_mask to create targets
        targets = input_ids[:, 1:].contiguous()
        input_ids = input_ids[:, :-1].contiguous()
        attention_mask = attention_mask[:, :-1].contiguous()
        
        outputs = model(input_ids)
        
        # Reshape outputs and targets for loss calculation
        outputs = outputs.view(-1, outputs.size(-1))
        targets = targets.view(-1)
        
        # Calculate loss (ignore padding token, usually 0)
        loss = F.cross_entropy(outputs, targets, ignore_index=0)
        
        loss.backward()
        optimizer.step()
        
        total_loss += loss.item()

    return total_loss / len(train_loader)

def validate(model, val_loader, device):
    model.eval()
    total_loss = 0
    with torch.no_grad():
        for batch in tqdm(val_loader):
            input_ids, attention_mask = batch
            input_ids, attention_mask = input_ids.to(device), attention_mask.to(device)
            
            outputs = model(input_ids)
            loss = F.cross_entropy(outputs.view(-1, outputs.size(-1)), input_ids.view(-1), ignore_index=0)
            
            total_loss += loss.item()
    
    return total_loss / len(val_loader)

# main execution
if __name__ == "__main__":
    # Initialize distributed environment
    dist.init_process_group(backend='nccl')
    local_rank = int(os.environ["LOCAL_RANK"])
    torch.cuda.set_device(local_rank)
    device = torch.device("cuda", local_rank)

    # Hyperparameters
    vocab_size = 50257  # GPT-2 tokenizer vocab size
    dim = 256
    num_layers = 8
    num_heads = 8
    num_experts = 512 * 512  # 1M experts
    top_k = 16
    batch_size = 6
    num_epochs = 10
    learning_rate = 1e-4
    
    # Initialize tokenizer and model
    tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
    tokenizer.pad_token = tokenizer.eos_token
    model = PEERLanguageModel(vocab_size, dim, num_layers, num_heads, num_experts, top_k).to(device)
    
    # Wrap the model with DistributedDataParallel
    model = DDP(model, device_ids=[local_rank], output_device=local_rank)
    
    # Load Pile dataset
    train_dataset = PileDataset('Salesforce/wikitext', tokenizer, split='train')
    val_dataset = PileDataset('Salesforce/wikitext', tokenizer, split='validation')
    
    # Use DistributedSampler for the training data
    train_sampler = DistributedSampler(train_dataset)
    train_loader = DataLoader(train_dataset, batch_size=batch_size, sampler=train_sampler)
    val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
    
    # Optimizer
    optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
    
    if local_rank == 0:
        print("Number of parameters:", sum(p.numel() for p in model.parameters()))
    
    # Training and validation loop
    best_val_loss = float('inf')
    for epoch in range(num_epochs):
        train_sampler.set_epoch(epoch)
        if local_rank == 0:
            print(f"Epoch Training {epoch+1}/{num_epochs}")
        train_loss = train(model, train_loader, optimizer, device)
        if local_rank == 0:
            print(f"Epoch Validation {epoch+1}/{num_epochs}")
            val_loss = validate(model, val_loader, device)
            print(f"Epoch {epoch+1}/{num_epochs}, Train Loss: {train_loss:.4f}, Val Loss: {val_loss:.4f}")
        
            # Save the best model
            if val_loss < best_val_loss:
                best_val_loss = val_loss
                torch.save(model.state_dict(), 'best_peer_language_model.pth')
    
    # Save the final trained model
    if local_rank == 0:
        torch.save(model.state_dict(), 'final_peer_language_model.pth')

    # Clean up
    dist.destroy_process_group()