File size: 9,167 Bytes
905cc0d ec378c3 905cc0d ec378c3 905cc0d ec378c3 905cc0d ec378c3 905cc0d ec378c3 905cc0d ec378c3 905cc0d ec378c3 905cc0d ec378c3 905cc0d ec378c3 905cc0d ec378c3 905cc0d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
#%%
from functools import partial
import logging
from einops import rearrange, repeat
from typing import Dict, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn, Tensor
from config import AutoConfig
from backbone import (
build_backbone,
AdaLNLoRADiNOv2ViT,
)
from blocks import (
build_conv_blocks,
build_class_token_mlp,
DictConvBlocks,
ClassTokenMLPs,
)
from config_utils import load_from_yaml
from topyneck import (
build_coords_mlp,
CachedCoordsMLP,
build_voxelouts_weight,
CoordsMLPLinearWeight,
VoxelNonShareLinearWeight,
)
import numpy as np
class BrainEncodingModel(nn.Module):
def __init__(
self,
cfg: AutoConfig,
n_voxel_dict = {'subj01': 327684},
):
super().__init__()
self.subject_list = list(n_voxel_dict.keys())
assert len(self.subject_list) == 1, "Only one subject is supported"
self.layers = cfg.MODEL.BACKBONE.LAYERS
self.layers_small = cfg.MODEL.BACKBONE_SMALL.LAYERS
self.n_layers = len(self.layers)
r = cfg.MODEL.WIDTH_RATIO
cfg.MODEL.CONV_HEAD.WIDTH = int(cfg.MODEL.CONV_HEAD.WIDTH * r)
self.cfg = cfg
self.backbone: AdaLNLoRADiNOv2ViT = build_backbone(cfg)
self.conv_blocks: DictConvBlocks = build_conv_blocks(cfg)
self.cls_blocks: ClassTokenMLPs = build_class_token_mlp(cfg)
def build_each_subject(fn, subject_list):
return nn.ModuleDict({subject: fn() for subject in subject_list})
self.layer_selector: Dict[str, CachedCoordsMLP] = build_each_subject(
partial(
build_coords_mlp,
cfg=cfg,
in_dim=cfg.POSITION_ENCODING.IN_DIM,
out_dim=self.n_layers,
act_fn=partial(nn.Softmax, dim=-1),
),
self.subject_list,
)
self.retina_mapper: Dict[str, CachedCoordsMLP] = build_each_subject(
partial(
build_coords_mlp,
cfg=cfg,
in_dim=cfg.POSITION_ENCODING.IN_DIM,
out_dim=2,
act_fn=nn.Tanh,
),
self.subject_list,
)
self.mu_sigma = cfg.MODEL.RETINA_MAPPER.CONSTANT_SIGMA
# voxel-wise output
d_model = self.cfg.MODEL.CONV_HEAD.WIDTH
self.n_voxel_dict = n_voxel_dict
self.d_model = d_model
self.voxel_outs_weight: Dict[
str, Union[VoxelNonShareLinearWeight, CoordsMLPLinearWeight]
] = nn.ModuleDict(
{
subject: build_voxelouts_weight(cfg, self.n_voxel_dict[subject], self.d_model)
for subject in self.subject_list
}
)
self.coords : nn.Parameter = None
def forward(
self,
x: Tensor, # [B, C, H, W]
voxel_indices: Optional[Tensor] = None,
chunk_size=4096,
**kwargs,
):
coords = self.coords
subject = self.subject_list[0]
bsz = x.shape[0]
device = x.device
dtype = x.dtype
x_retina_grid, x_cls_dict = self.backbone.get_intermediate_layers(
x, n=self.layers, c=None
)
x_retina_grid = self.conv_blocks(x_retina_grid)
x_cls_dict = self.cls_blocks(x_cls_dict)
x_cls = torch.stack(list(x_cls_dict.values()), dim=-1) # [B, D, 4]
#############################
### voxel-wise prediction ###
#############################
# divide voxels into chunks to avoid OOM
n_voxels = coords.shape[0]
if voxel_indices is None or voxel_indices == ...:
voxel_indices = torch.arange(n_voxels, device=coords.device)
voxel_indices_chunks = torch.split(voxel_indices, chunk_size)
out_ys, reg_layers = [], []
for voxel_indices_chunk in voxel_indices_chunks:
out_y, reg_layer = self._forward_voxels(
x_retina_grid,
x_cls,
subject,
coords,
voxel_indices_chunk,
bsz,
device,
dtype
)
out_ys.append(out_y)
reg_layers.append(reg_layer)
out_y = torch.cat(out_ys, dim=1) # [B, N]
reg_layer = torch.cat(reg_layers, dim=0).mean() # [1]
# if self.training:
# return out_y, reg_layer
# else:
return out_y
def _forward_voxels(
self,
x_retina_grid: Dict[str, Tensor], # {layer: [B, D, H/k, W/k], ...}
x_cls: Tensor, # [B, D, 4]
subject: str,
coords: Tensor,
voxel_indices: Tensor,
bsz,
device,
dtype,
):
N = len(voxel_indices)
## Layer Selector
w_layer = self.layer_selector[subject](coords, voxel_indices) # [N, 4]
# regularization
def entropy(x):
return (x * x.log()).sum(dim=1)
if self.training and next(self.layer_selector.parameters()).requires_grad:
reg_layer = entropy(w_layer) # [N]
else:
reg_layer = torch.zeros_like(w_layer[:, 0]) # [N]
x_cls = repeat(x_cls, "b d l -> b n d l", n=1)
_w_layer = repeat(w_layer, "n l -> b n d l", b=1, d=1)
x_cls = (x_cls * _w_layer).sum(dim=-1) # [B, N, D]
## Retina Mapper
mu = self.retina_mapper[subject](coords, voxel_indices) # [N, 2]
mu = mu * (1 - self.mu_sigma)
if self.training:
norm = torch.normal(0, torch.ones_like(mu) * self.mu_sigma)
mu = mu + norm
bsz = x_cls.shape[0]
mu = repeat(mu, "n d -> b n d", b=bsz)
mu = rearrange(mu, "b n (d c) -> b n d c", d=1, c=2)
if self.cfg.EXPERIMENTAL.USE_LAYER_SELECTOR:
_w_layer = repeat(w_layer, "n l -> b n l", b=1)
x_retina = None # [B, N, D]
for i, layer in zip(range(self.n_layers), self.layers):
x = x_retina_grid[str(layer)]
_x_retina = F.grid_sample(
x,
mu,
mode="bilinear",
padding_mode="zeros",
align_corners=False,
) # [B, C, N, D] (C=D_model, D=1, N=N_voxels)
_x_retina = rearrange(_x_retina, "b c n d -> b n (c d)")
if self.cfg.EXPERIMENTAL.USE_LAYER_SELECTOR:
_x_retina = _x_retina * _w_layer[:, :, i : i + 1]
if x_retina is None:
x_retina = _x_retina
else:
x_retina += _x_retina
# x_retina: [B, N, D]
x_y = x_retina + x_cls # [B, N, D] # T=0
w, b = self.voxel_outs_weight[subject](coords, voxel_indices) # [N, DDD], [N]
out_y = (x_y * w.unsqueeze(0)).mean(-1) + b.unsqueeze(0) # [B, N]
return out_y, reg_layer # [B, N], [N]
def _load_one_model(model_path: str, subject: str='subj01', cfg_path: str=None):
cfg = load_from_yaml(cfg_path)
# load model weights
sd = torch.load(model_path, map_location='cpu')
n_voxels = sd[f'model.voxel_outs_weight.{subject}.weight'].shape[0]
# create model
model = BrainEncodingModel(cfg, {subject: n_voxels})
# save voxel's coordinates to model
coords = sd[f'coord_dict.{subject}']
model.coords = nn.Parameter(coords)
# load weights
filtered_sd = {k: v for k, v in sd.items() if k.startswith('model')}
filtered_sd = {k[6:]: v for k, v in filtered_sd.items() if k.startswith('model')}
filtered_sd['coords'] = model.coords # add coordinates of voxels
model.load_state_dict(filtered_sd)
model = model.eval()
return model
class TowPartModel(nn.Module):
def __init__(self, model_part1, model_part2, part1_voxel_indices):
super().__init__()
self.model_part1 = model_part1
self.model_part2 = model_part2
self.part1_voxel_indices = part1_voxel_indices
def forward(self, x):
# x: [B, 3, 224, 224] # image after normalization
out1 = self.model_part1(x)
out2 = self.model_part2(x)
out = out2
out[:, self.part1_voxel_indices] = out1
return out
# %%
if __name__ == '__main__':
# model_path = "/nfscc/alg23/xalex_distill2/high/t826c6_00016_DATASET.SUBJECT_LIST=subj01,LOSS.DARK.MAX_EPOCH=90,/soup.pth"
subject = 'subj01'
cfg_path = "/workspace/model_packed2/config.yaml"
model_path1 = f"/workspace/model_packed2/ckpts/{subject}_part1.pth"
model_path2 = f"/workspace/model_packed2/ckpts/{subject}_part2.pth"
model1 = _load_one_model(model_path1, subject, cfg_path)
model2 = _load_one_model(model_path2, subject, cfg_path)
voxel_indices_path = "/workspace/model_packed2/ckpts/part1_voxel_indices.pt"
voxel_indices = torch.load(voxel_indices_path)[subject]
model = TowPartModel(model1, model2, voxel_indices)
x = torch.randn(1, 3, 224, 224)
x = x.cuda()
model = model.cuda()
out = model(x)
print(out.shape)
|