update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: IDEA-CCNL/Erlangshen-Longformer-110M
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: Erlangshen-Longformer-110M-wallstreetcn-morning-news-market-overview-SSEC-v13
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# Erlangshen-Longformer-110M-wallstreetcn-morning-news-market-overview-SSEC-v13
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [IDEA-CCNL/Erlangshen-Longformer-110M](https://huggingface.co/IDEA-CCNL/Erlangshen-Longformer-110M) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 3.8119
|
21 |
+
- Accuracy: 0.5312
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 2e-05
|
41 |
+
- train_batch_size: 8
|
42 |
+
- eval_batch_size: 8
|
43 |
+
- seed: 42
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- num_epochs: 10
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
51 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
52 |
+
| No log | 1.0 | 34 | 2.4781 | 0.5938 |
|
53 |
+
| No log | 2.0 | 68 | 2.7322 | 0.625 |
|
54 |
+
| No log | 3.0 | 102 | 2.9097 | 0.5625 |
|
55 |
+
| No log | 4.0 | 136 | 4.1589 | 0.4062 |
|
56 |
+
| No log | 5.0 | 170 | 3.0174 | 0.625 |
|
57 |
+
| No log | 6.0 | 204 | 3.7337 | 0.4062 |
|
58 |
+
| No log | 7.0 | 238 | 3.2421 | 0.5938 |
|
59 |
+
| No log | 8.0 | 272 | 3.4698 | 0.5 |
|
60 |
+
| No log | 9.0 | 306 | 3.2162 | 0.625 |
|
61 |
+
| No log | 10.0 | 340 | 3.8119 | 0.5312 |
|
62 |
+
|
63 |
+
|
64 |
+
### Framework versions
|
65 |
+
|
66 |
+
- Transformers 4.31.0
|
67 |
+
- Pytorch 2.0.1+cu118
|
68 |
+
- Datasets 2.14.4
|
69 |
+
- Tokenizers 0.13.3
|