llama-3-8b-dpo-full / README.md
hxssgaa's picture
Model save
207aa1d verified
|
raw
history blame
2.78 kB
metadata
library_name: transformers
license: llama3.1
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
tags:
  - trl
  - dpo
  - generated_from_trainer
model-index:
  - name: llama-3-8b-dpo-full
    results: []

llama-3-8b-dpo-full

This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5582
  • Rewards/chosen: -1.3603
  • Rewards/rejected: -2.0529
  • Rewards/accuracies: 0.7262
  • Rewards/margins: 0.6926
  • Logps/rejected: -600.9839
  • Logps/chosen: -540.5128
  • Logits/rejected: -2.7438
  • Logits/chosen: -2.5853

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-07
  • train_batch_size: 2
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 128
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.6341 0.2094 100 0.6223 -0.6021 -0.8779 0.7103 0.2758 -483.4830 -464.6949 -2.6189 -2.4353
0.5887 0.4187 200 0.5796 -1.0505 -1.5993 0.7143 0.5488 -555.6263 -509.5346 -2.6508 -2.4854
0.5667 0.6281 300 0.5653 -1.0427 -1.6191 0.7222 0.5764 -557.6055 -508.7539 -2.6684 -2.5120
0.5803 0.8375 400 0.5582 -1.3603 -2.0529 0.7262 0.6926 -600.9839 -540.5128 -2.7438 -2.5853

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0+cu121
  • Datasets 3.0.0
  • Tokenizers 0.20.0