--- library_name: transformers license: llama3.1 base_model: meta-llama/Meta-Llama-3.1-8B-Instruct tags: - trl - dpo - generated_from_trainer model-index: - name: llama-3-8b-dpo-full results: [] --- # llama-3-8b-dpo-full This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5582 - Rewards/chosen: -1.3603 - Rewards/rejected: -2.0529 - Rewards/accuracies: 0.7262 - Rewards/margins: 0.6926 - Logps/rejected: -600.9839 - Logps/chosen: -540.5128 - Logits/rejected: -2.7438 - Logits/chosen: -2.5853 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-07 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6341 | 0.2094 | 100 | 0.6223 | -0.6021 | -0.8779 | 0.7103 | 0.2758 | -483.4830 | -464.6949 | -2.6189 | -2.4353 | | 0.5887 | 0.4187 | 200 | 0.5796 | -1.0505 | -1.5993 | 0.7143 | 0.5488 | -555.6263 | -509.5346 | -2.6508 | -2.4854 | | 0.5667 | 0.6281 | 300 | 0.5653 | -1.0427 | -1.6191 | 0.7222 | 0.5764 | -557.6055 | -508.7539 | -2.6684 | -2.5120 | | 0.5803 | 0.8375 | 400 | 0.5582 | -1.3603 | -2.0529 | 0.7262 | 0.6926 | -600.9839 | -540.5128 | -2.7438 | -2.5853 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0+cu121 - Datasets 3.0.0 - Tokenizers 0.20.0