--- library_name: transformers license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - alignment-handbook - trl - dpo - generated_from_trainer - trl - dpo - generated_from_trainer datasets: - trl-lib/ultrafeedback_binarized model-index: - name: llama-3-8b-dpo-full results: [] --- # llama-3-8b-dpo-full This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the trl-lib/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set: - Loss: 0.6491 - Rewards/chosen: -0.1814 - Rewards/rejected: -0.2255 - Rewards/accuracies: 0.5625 - Rewards/margins: 0.0441 - Logps/rejected: -419.1795 - Logps/chosen: -335.9990 - Logits/rejected: -1.1373 - Logits/chosen: -1.0280 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-07 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 32 - gradient_accumulation_steps: 8 - total_train_batch_size: 512 - total_eval_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6411 | 0.8239 | 100 | 0.6494 | -0.1752 | -0.2195 | 0.5625 | 0.0443 | -418.5782 | -335.3811 | -1.1582 | -1.0463 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0+cu121 - Datasets 3.0.0 - Tokenizers 0.20.0