Commit
·
d3426b5
1
Parent(s):
7679dc0
update model card README.md
Browse files
README.md
CHANGED
@@ -24,16 +24,16 @@ model-index:
|
|
24 |
metrics:
|
25 |
- name: Accuracy
|
26 |
type: accuracy
|
27 |
-
value: 0.
|
28 |
- name: Precision
|
29 |
type: precision
|
30 |
-
value: 0.
|
31 |
- name: Recall
|
32 |
type: recall
|
33 |
-
value: 0.
|
34 |
- name: F1
|
35 |
type: f1
|
36 |
-
value: 0.
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -43,11 +43,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
43 |
|
44 |
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
-
- Loss: 0.
|
47 |
-
- Accuracy: 0.
|
48 |
-
- Precision: 0.
|
49 |
-
- Recall: 0.
|
50 |
-
- F1: 0.
|
51 |
|
52 |
## Model description
|
53 |
|
@@ -81,11 +81,11 @@ The following hyperparameters were used during training:
|
|
81 |
|
82 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
83 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
|
90 |
|
91 |
### Framework versions
|
|
|
24 |
metrics:
|
25 |
- name: Accuracy
|
26 |
type: accuracy
|
27 |
+
value: 0.9977631269131152
|
28 |
- name: Precision
|
29 |
type: precision
|
30 |
+
value: 0.998134723737648
|
31 |
- name: Recall
|
32 |
type: recall
|
33 |
+
value: 0.9974298183920257
|
34 |
- name: F1
|
35 |
type: f1
|
36 |
+
value: 0.9977816548360952
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
43 |
|
44 |
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 0.0228
|
47 |
+
- Accuracy: 0.9978
|
48 |
+
- Precision: 0.9981
|
49 |
+
- Recall: 0.9974
|
50 |
+
- F1: 0.9978
|
51 |
|
52 |
## Model description
|
53 |
|
|
|
81 |
|
82 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
83 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
84 |
+
| 0.1415 | 1.0 | 149 | 0.1286 | 0.9712 | 0.9788 | 0.9623 | 0.9700 |
|
85 |
+
| 0.0671 | 2.0 | 299 | 0.0463 | 0.9948 | 0.9917 | 0.9946 | 0.9932 |
|
86 |
+
| 0.0423 | 3.0 | 448 | 0.0356 | 0.9952 | 0.9970 | 0.9908 | 0.9939 |
|
87 |
+
| 0.0383 | 4.0 | 598 | 0.0242 | 0.9976 | 0.9980 | 0.9972 | 0.9976 |
|
88 |
+
| 0.033 | 4.98 | 745 | 0.0228 | 0.9978 | 0.9981 | 0.9974 | 0.9978 |
|
89 |
|
90 |
|
91 |
### Framework versions
|