""" Copyright (c) 2023, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ import contextlib import logging import os import time import datetime import torch import torch.nn as nn import torch.distributed as dist import torch.nn.functional as F import medomni.common.dist_utils as dist_utils from medomni.common.dist_utils import download_cached_file from medomni.common.utils import is_url from medomni.common.logger import MetricLogger from medomni.models.base_model import BaseModel from medomni.models.Qformer import BertConfig, BertLMHeadModel from medomni.models.eva_vit import create_eva_vit_g from transformers import BertTokenizer class Blip2Base(BaseModel): @classmethod def init_tokenizer(cls): tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") tokenizer.add_special_tokens({"bos_token": "[DEC]"}) return tokenizer def maybe_autocast(self, device, dtype=torch.float16): # if on cpu, don't use autocast # if on gpu, use autocast with dtype if provided, otherwise use torch.float16 enable_autocast = device != torch.device("cpu") if enable_autocast: return torch.cuda.amp.autocast(dtype=dtype) else: return contextlib.nullcontext() @classmethod def init_Qformer(cls, num_query_token, vision_width, cross_attention_freq=2): encoder_config = BertConfig.from_pretrained("bert-base-uncased") encoder_config.encoder_width = vision_width # insert cross-attention layer every other block encoder_config.add_cross_attention = True encoder_config.cross_attention_freq = cross_attention_freq encoder_config.query_length = num_query_token Qformer = BertLMHeadModel(config=encoder_config) query_tokens = nn.Parameter( torch.zeros(1, num_query_token, encoder_config.hidden_size) ) query_tokens.data.normal_(mean=0.0, std=encoder_config.initializer_range) return Qformer, query_tokens @classmethod def init_vision_encoder( cls, model_name, img_size, drop_path_rate, use_grad_checkpoint, precision ): assert model_name == "eva_clip_g", "vit model must be eva_clip_g for current version of MiniGPT-4" visual_encoder = create_eva_vit_g( img_size, drop_path_rate, use_grad_checkpoint, precision ) ln_vision = LayerNorm(visual_encoder.num_features) return visual_encoder, ln_vision def load_from_pretrained(self, url_or_filename): if is_url(url_or_filename): cached_file = download_cached_file( url_or_filename, check_hash=False, progress=True ) checkpoint = torch.load(cached_file, map_location="cpu") elif os.path.isfile(url_or_filename): checkpoint = torch.load(url_or_filename, map_location="cpu") else: raise RuntimeError("checkpoint url or path is invalid") state_dict = checkpoint["model"] msg = self.load_state_dict(state_dict, strict=False) # logging.info("Missing keys {}".format(msg.missing_keys)) logging.info("load checkpoint from %s" % url_or_filename) return msg def disabled_train(self, mode=True): """Overwrite model.train with this function to make sure train/eval mode does not change anymore.""" return self class LayerNorm(nn.LayerNorm): """Subclass torch's LayerNorm to handle fp16.""" def forward(self, x: torch.Tensor): orig_type = x.dtype ret = super().forward(x.type(torch.float32)) return ret.type(orig_type) def compute_sim_matrix(model, data_loader, **kwargs): k_test = kwargs.pop("k_test") metric_logger = MetricLogger(delimiter=" ") header = "Evaluation:" logging.info("Computing features for evaluation...") start_time = time.time() texts = data_loader.dataset.text num_text = len(texts) text_bs = 256 text_ids = [] text_embeds = [] text_atts = [] for i in range(0, num_text, text_bs): text = texts[i : min(num_text, i + text_bs)] text_input = model.tokenizer( text, padding="max_length", truncation=True, max_length=35, return_tensors="pt", ).to(model.device) text_feat = model.forward_text(text_input) text_embed = F.normalize(model.text_proj(text_feat)) text_embeds.append(text_embed) text_ids.append(text_input.input_ids) text_atts.append(text_input.attention_mask) text_embeds = torch.cat(text_embeds, dim=0) text_ids = torch.cat(text_ids, dim=0) text_atts = torch.cat(text_atts, dim=0) vit_feats = [] image_embeds = [] for samples in data_loader: image = samples["image"] image = image.to(model.device) image_feat, vit_feat = model.forward_image(image) image_embed = model.vision_proj(image_feat) image_embed = F.normalize(image_embed, dim=-1) vit_feats.append(vit_feat.cpu()) image_embeds.append(image_embed) vit_feats = torch.cat(vit_feats, dim=0) image_embeds = torch.cat(image_embeds, dim=0) sims_matrix = [] for image_embed in image_embeds: sim_q2t = image_embed @ text_embeds.t() sim_i2t, _ = sim_q2t.max(0) sims_matrix.append(sim_i2t) sims_matrix = torch.stack(sims_matrix, dim=0) score_matrix_i2t = torch.full( (len(data_loader.dataset.image), len(texts)), -100.0 ).to(model.device) num_tasks = dist_utils.get_world_size() rank = dist_utils.get_rank() step = sims_matrix.size(0) // num_tasks + 1 start = rank * step end = min(sims_matrix.size(0), start + step) for i, sims in enumerate( metric_logger.log_every(sims_matrix[start:end], 50, header) ): topk_sim, topk_idx = sims.topk(k=k_test, dim=0) image_inputs = vit_feats[start + i].repeat(k_test, 1, 1).to(model.device) score = model.compute_itm( image_inputs=image_inputs, text_ids=text_ids[topk_idx], text_atts=text_atts[topk_idx], ).float() score_matrix_i2t[start + i, topk_idx] = score + topk_sim sims_matrix = sims_matrix.t() score_matrix_t2i = torch.full( (len(texts), len(data_loader.dataset.image)), -100.0 ).to(model.device) step = sims_matrix.size(0) // num_tasks + 1 start = rank * step end = min(sims_matrix.size(0), start + step) for i, sims in enumerate( metric_logger.log_every(sims_matrix[start:end], 50, header) ): topk_sim, topk_idx = sims.topk(k=k_test, dim=0) image_inputs = vit_feats[topk_idx.cpu()].to(model.device) score = model.compute_itm( image_inputs=image_inputs, text_ids=text_ids[start + i].repeat(k_test, 1), text_atts=text_atts[start + i].repeat(k_test, 1), ).float() score_matrix_t2i[start + i, topk_idx] = score + topk_sim if dist_utils.is_dist_avail_and_initialized(): dist.barrier() torch.distributed.all_reduce( score_matrix_i2t, op=torch.distributed.ReduceOp.SUM ) torch.distributed.all_reduce( score_matrix_t2i, op=torch.distributed.ReduceOp.SUM ) total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) logging.info("Evaluation time {}".format(total_time_str)) return score_matrix_i2t.cpu().numpy(), score_matrix_t2i.cpu().numpy()