--- language: - sw - en license: cc-by-4.0 library_name: peft datasets: - iamshnoo/alpaca-cleaned-swahili base_model: meta-llama/Llama-2-7b-hf --- This represents the PEFT weights only. The base model is LLaMA 2. Instruction finetuning was done using 4 bit QLoRA on a single A100 GPU with the PEFT config as given below. The dataset used for this instruction finetuning process is a translated version of the cleaned alpaca dataset (translated using NLLB-1.3B). Do note that this model might have inferior performance on some language specific tasks compared to full finetuning or a different base model trained with more language specific data. ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0