ibadrehman
commited on
Commit
•
df6e9c4
1
Parent(s):
48d7c74
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +95 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -1.20 +/- 0.48
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c228dc7d85286d4ee47ca155fcf73c8bcf2a66e73023f670fea179a76e1cd6cb
|
3 |
+
size 107861
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x136cdc670>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x136cf9200>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1681058687570107000,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"lr_schedule": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVCQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMay9vcHQvaG9tZWJyZXcvQ2Fza3Jvb20vbWluaWZvcmdlL2Jhc2UvZW52cy9ybC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxrL29wdC9ob21lYnJldy9DYXNrcm9vbS9taW5pZm9yZ2UvYmFzZS9lbnZzL3JsL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
33 |
+
},
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAHp7TPvtI9zyJOhQ/Hp7TPvtI9zyJOhQ/Hp7TPvtI9zyJOhQ/Hp7TPvtI9zyJOhQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAEXPDPklNu7+07Is+j3aHv6J9or89xtK/U7w/vqwJr79j/7M/t72xPyFDoL8fbWs/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAentM++0j3PIk6FD+uL6E8UIVFuw2vljwentM++0j3PIk6FD+uL6E8UIVFuw2vljwentM++0j3PIk6FD+uL6E8UIVFuw2vljwentM++0j3PIk6FD+uL6E8UIVFuw2vljyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[0.4133157 0.03018617 0.5790182 ]\n [0.4133157 0.03018617 0.5790182 ]\n [0.4133157 0.03018617 0.5790182 ]\n [0.4133157 0.03018617 0.5790182 ]]",
|
38 |
+
"desired_goal": "[[ 0.38173726 -1.463296 0.27329028]\n [-1.0583056 -1.269459 -1.6466748 ]\n [-0.18724184 -1.3674827 1.4062313 ]\n [ 1.3886021 -1.2520486 0.9196338 ]]",
|
39 |
+
"observation": "[[ 0.4133157 0.03018617 0.5790182 0.01967606 -0.00301393 0.01839402]\n [ 0.4133157 0.03018617 0.5790182 0.01967606 -0.00301393 0.01839402]\n [ 0.4133157 0.03018617 0.5790182 0.01967606 -0.00301393 0.01839402]\n [ 0.4133157 0.03018617 0.5790182 0.01967606 -0.00301393 0.01839402]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPZ1qGqxDI0o+6nIdPZ1qGqxDI0o+6nIdPZ1qGqxDI0o+6nIdPZ1qGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAATgEju8ZDuj3XuEs+hw8+PYHi3rx0W4E9zKLPvQRiEb7CjJw9VTNHPeIY6L1J7Sw+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09nWoarEMjSj4AAAAAAAAAgAAAAADqch09nWoarEMjSj4AAAAAAAAAgAAAAADqch09nWoarEMjSj4AAAAAAAAAgAAAAADqch09nWoarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1943899e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943899e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943899e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943899e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[-0.00248726 0.09094958 0.1989473 ]\n [ 0.04640153 -0.02720761 0.06316271]\n [-0.10138473 -0.14197546 0.07644035]\n [ 0.04863294 -0.11332871 0.16887392]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1943899e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943899e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943899e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943899e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.0,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIiXjr/Ntl1b+UhpRSlIwBbJRLMowBdJRHQIx/ghr30wt1fZQoaAZoCWgPQwj+Cpkrg2ruv5SGlFKUaBVLMmgWR0CMfy1dgOSXdX2UKGgGaAloD0MIjUXT2cng6L+UhpRSlGgVSzJoFkdAjH7ZOSGJvnV9lChoBmgJaA9DCDW4rS08b/G/lIaUUpRoFUsyaBZHQIx+hWxQizN1fZQoaAZoCWgPQwhpkIKnkGvzv5SGlFKUaBVLMmgWR0CMgQM3qAz6dX2UKGgGaAloD0MIt9CVCFR/77+UhpRSlGgVSzJoFkdAjICuafBeonV9lChoBmgJaA9DCABzLVqAtum/lIaUUpRoFUsyaBZHQIyAWoLofSx1fZQoaAZoCWgPQwjt2AjE63rov5SGlFKUaBVLMmgWR0CMgAbDuSfUdX2UKGgGaAloD0MITS1b64sE9L+UhpRSlGgVSzJoFkdAjIKOC5EtunV9lChoBmgJaA9DCBk5C3va4de/lIaUUpRoFUsyaBZHQIyCOTxG2Cx1fZQoaAZoCWgPQwg5DVGFP0Prv5SGlFKUaBVLMmgWR0CMgeUoKD02dX2UKGgGaAloD0MIL/zgfOrY5L+UhpRSlGgVSzJoFkdAjIGRQrMC93V9lChoBmgJaA9DCMfzGVBvRum/lIaUUpRoFUsyaBZHQIyED7ZWaMJ1fZQoaAZoCWgPQwjhDWlU4GThv5SGlFKUaBVLMmgWR0CMg7rtVrAQdX2UKGgGaAloD0MImzdOCvMe5L+UhpRSlGgVSzJoFkdAjINnDR+jM3V9lChoBmgJaA9DCOqvV1hwP/W/lIaUUpRoFUsyaBZHQIyDExj8UEh1fZQoaAZoCWgPQwhZGY18XvHqv5SGlFKUaBVLMmgWR0CMhZuF6AvtdX2UKGgGaAloD0MIllmEYivo5L+UhpRSlGgVSzJoFkdAjIVGr0aqCHV9lChoBmgJaA9DCOGbps8OuNm/lIaUUpRoFUsyaBZHQIyE8uWa+ex1fZQoaAZoCWgPQwinyYy3ld7iv5SGlFKUaBVLMmgWR0CMhJ8ZUDMedX2UKGgGaAloD0MIbolccAb/5b+UhpRSlGgVSzJoFkdAjIcXsw+MZXV9lChoBmgJaA9DCJQu/UtSWfa/lIaUUpRoFUsyaBZHQIyGwvnKW9l1fZQoaAZoCWgPQwgxCKwcWmTtv5SGlFKUaBVLMmgWR0CMhm8h9srNdX2UKGgGaAloD0MI/n+cMGH097+UhpRSlGgVSzJoFkdAjIYbT+ee4HV9lChoBmgJaA9DCJwwYTQr2+i/lIaUUpRoFUsyaBZHQIyIotWdVed1fZQoaAZoCWgPQwiGyypsBrjVv5SGlFKUaBVLMmgWR0CMiE3uNPxhdX2UKGgGaAloD0MIDk5Ev7b+6L+UhpRSlGgVSzJoFkdAjIf6FEiMYXV9lChoBmgJaA9DCN5X5ULlX+O/lIaUUpRoFUsyaBZHQIyHpkupS751fZQoaAZoCWgPQwgN38K68W7rv5SGlFKUaBVLMmgWR0CMiiXeFcptdX2UKGgGaAloD0MIlYJuL2nM8b+UhpRSlGgVSzJoFkdAjInRSYPXkHV9lChoBmgJaA9DCExxVdl3Rdy/lIaUUpRoFUsyaBZHQIyJfYcvM8p1fZQoaAZoCWgPQwheK6G7JM71v5SGlFKUaBVLMmgWR0CMiSnQ6ZH/dX2UKGgGaAloD0MIvRx23zE86r+UhpRSlGgVSzJoFkdAjIvCTUy57XV9lChoBmgJaA9DCLsJvmn6LPi/lIaUUpRoFUsyaBZHQIyLbUI9kjJ1fZQoaAZoCWgPQwiAn3HhQEjev5SGlFKUaBVLMmgWR0CMixleWv8qdX2UKGgGaAloD0MIyEEJM23/2L+UhpRSlGgVSzJoFkdAjIrFkhA4XHV9lChoBmgJaA9DCB42kZkLnPa/lIaUUpRoFUsyaBZHQIyNT1Iy0rt1fZQoaAZoCWgPQwj8471qZQL1v5SGlFKUaBVLMmgWR0CMjPqj8DSxdX2UKGgGaAloD0MIWoP3VblQ77+UhpRSlGgVSzJoFkdAjIymuLaVU3V9lChoBmgJaA9DCOxRuB6F6+2/lIaUUpRoFUsyaBZHQIyMUvRJEpl1fZQoaAZoCWgPQwh4RIXq5iLzv5SGlFKUaBVLMmgWR0CMjtpoK2KEdX2UKGgGaAloD0MIw7rx7sjY7b+UhpRSlGgVSzJoFkdAjI6FvAGjbnV9lChoBmgJaA9DCCMVxhaCHOm/lIaUUpRoFUsyaBZHQIyOMfxMFll1fZQoaAZoCWgPQwhUOIJUih32v5SGlFKUaBVLMmgWR0CMjd4Ju2qldX2UKGgGaAloD0MIjx1U4jqG9b+UhpRSlGgVSzJoFkdAjJBhEroW6HV9lChoBmgJaA9DCL6kMVpHVem/lIaUUpRoFUsyaBZHQIyQDE5yU9p1fZQoaAZoCWgPQwh07KAS13H6v5SGlFKUaBVLMmgWR0CMj7hvR7Z4dX2UKGgGaAloD0MI/d07akwI6r+UhpRSlGgVSzJoFkdAjI9kfcN6PnV9lChoBmgJaA9DCCAm4UIeQQDAlIaUUpRoFUsyaBZHQIyR4Hqu8sd1fZQoaAZoCWgPQwi3YRQEj28AwJSGlFKUaBVLMmgWR0CMkYvCdjG2dX2UKGgGaAloD0MIhugQOBKo9r+UhpRSlGgVSzJoFkdAjJE3vYvnKXV9lChoBmgJaA9DCLaBO1CnfPC/lIaUUpRoFUsyaBZHQIyQ5AIIF/x1fZQoaAZoCWgPQwiw/s9hvrzZv5SGlFKUaBVLMmgWR0CMk25xzaK2dX2UKGgGaAloD0MIzEI7p1ng8L+UhpRSlGgVSzJoFkdAjJMZsj3VTnV9lChoBmgJaA9DCO8dNSbEHPC/lIaUUpRoFUsyaBZHQIySxdyDIzZ1fZQoaAZoCWgPQwg3VIzzN6Hvv5SGlFKUaBVLMmgWR0CMknH5rP+odX2UKGgGaAloD0MImtGPhlNm9b+UhpRSlGgVSzJoFkdAjJT5lOGj9HV9lChoBmgJaA9DCOFdLuI7seS/lIaUUpRoFUsyaBZHQIyUpNCZ4Od1fZQoaAZoCWgPQwhklj0JbM72v5SGlFKUaBVLMmgWR0CMlFD8cdYGdX2UKGgGaAloD0MIg4b+CS6W9b+UhpRSlGgVSzJoFkdAjJP9IoVmBnV9lChoBmgJaA9DCHTOT3EceOS/lIaUUpRoFUsyaBZHQIyWibc45tF1fZQoaAZoCWgPQwjF46JaRJTiv5SGlFKUaBVLMmgWR0CMljS5y2hJdX2UKGgGaAloD0MInNuEe2Xe9b+UhpRSlGgVSzJoFkdAjJXg31jAi3V9lChoBmgJaA9DCFBVoYFYNuO/lIaUUpRoFUsyaBZHQIyVjRIBikR1fZQoaAZoCWgPQwhFLGLYYewAwJSGlFKUaBVLMmgWR0CMmAwGnn+ydX2UKGgGaAloD0MIBmfw94sZAsCUhpRSlGgVSzJoFkdAjJe3SBshxHV9lChoBmgJaA9DCFA6kWCqGfG/lIaUUpRoFUsyaBZHQIyXYzN2TxJ1fZQoaAZoCWgPQwhxyXGndLDmv5SGlFKUaBVLMmgWR0CMlw9ic5KfdX2UKGgGaAloD0MIiesYV1yc5b+UhpRSlGgVSzJoFkdAjJmN+9allHV9lChoBmgJaA9DCJDY7h6ge/a/lIaUUpRoFUsyaBZHQIyZOS8rZrZ1fZQoaAZoCWgPQwgM5q+QubLjv5SGlFKUaBVLMmgWR0CMmOTsY2sJdX2UKGgGaAloD0MIUMjO29js6L+UhpRSlGgVSzJoFkdAjJiRGc4HX3V9lChoBmgJaA9DCHMPCd/7m/C/lIaUUpRoFUsyaBZHQIybFyJbdJt1fZQoaAZoCWgPQwgCnN7F+3H9v5SGlFKUaBVLMmgWR0CMmsI5YHPedX2UKGgGaAloD0MIh/iHLT3a8b+UhpRSlGgVSzJoFkdAjJpuclPac3V9lChoBmgJaA9DCKeufJbnQeq/lIaUUpRoFUsyaBZHQIyaGrMkhRt1fZQoaAZoCWgPQwhT6/1GO+7pv5SGlFKUaBVLMmgWR0CMnJ/iHZbqdX2UKGgGaAloD0MIf7+YLVmV9L+UhpRSlGgVSzJoFkdAjJxK//NqxnV9lChoBmgJaA9DCF/Rrdf0oN6/lIaUUpRoFUsyaBZHQIyb9zIV/MJ1fZQoaAZoCWgPQwgmqyLcZNTpv5SGlFKUaBVLMmgWR0CMm6NdZ7ojdX2UKGgGaAloD0MISwaAKm7c/L+UhpRSlGgVSzJoFkdAjJ4ojfNzKnV9lChoBmgJaA9DCNk+5C1XP+S/lIaUUpRoFUsyaBZHQIyd07+1jRV1fZQoaAZoCWgPQwgouFhRg+nsv5SGlFKUaBVLMmgWR0CMnX/m1YyPdX2UKGgGaAloD0MIMzSeCOI89b+UhpRSlGgVSzJoFkdAjJ0sG5c1O3V9lChoBmgJaA9DCOT09XzN8vO/lIaUUpRoFUsyaBZHQIyfsC7sfJV1fZQoaAZoCWgPQwgAxF29isz2v5SGlFKUaBVLMmgWR0CMn1t1IRRNdX2UKGgGaAloD0MIMLlRZK1h+r+UhpRSlGgVSzJoFkdAjJ8HkLhJiHV9lChoBmgJaA9DCOc1donqLfG/lIaUUpRoFUsyaBZHQIyes8YAKfF1fZQoaAZoCWgPQwgdVrjlI6nhv5SGlFKUaBVLMmgWR0CMoTechC+ldX2UKGgGaAloD0MIM4y7QbTW4b+UhpRSlGgVSzJoFkdAjKDiy6cy33V9lChoBmgJaA9DCGzOwTOhSea/lIaUUpRoFUsyaBZHQIygju8brC51fZQoaAZoCWgPQwj9hokGKbjzv5SGlFKUaBVLMmgWR0CMoDsWweNldX2UKGgGaAloD0MILZW3I5xW+b+UhpRSlGgVSzJoFkdAjKK9a2WpqHV9lChoBmgJaA9DCGtFm+PcJuG/lIaUUpRoFUsyaBZHQIyiaKk2xY91fZQoaAZoCWgPQwjgaTLjbaXmv5SGlFKUaBVLMmgWR0CMohTWoWHldX2UKGgGaAloD0MIFFysqMG067+UhpRSlGgVSzJoFkdAjKHBAGB4EHV9lChoBmgJaA9DCKN5AIv8eva/lIaUUpRoFUsyaBZHQIykQ/JNj9Z1fZQoaAZoCWgPQwhpjqz8Mpj2v5SGlFKUaBVLMmgWR0CMo+8kD6nBdX2UKGgGaAloD0MI34rEBDV827+UhpRSlGgVSzJoFkdAjKObcfvF33V9lChoBmgJaA9DCPZ698d71du/lIaUUpRoFUsyaBZHQIyjR4GD+R51ZS4="
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 50000,
|
66 |
+
"n_steps": 5,
|
67 |
+
"gamma": 0.99,
|
68 |
+
"gae_lambda": 1.0,
|
69 |
+
"ent_coef": 0.0,
|
70 |
+
"vf_coef": 0.5,
|
71 |
+
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7086d5f66ee0ea2b17e3165cc84cc262d4071c10eb0c24c8814e677b201a280
|
3 |
+
size 44542
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aed194f61f3ba9198e6af921bbfd18291d7e0a4fd2113f28815d7b0661a014ce
|
3 |
+
size 45886
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: macOS-13.1-arm64-arm-64bit Darwin Kernel Version 22.2.0: Fri Nov 11 02:04:44 PST 2022; root:xnu-8792.61.2~4/RELEASE_ARM64_T8103
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 1.11.0
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.21.2
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x136cdc670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x136cf9200>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681058687570107000, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVCQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMay9vcHQvaG9tZWJyZXcvQ2Fza3Jvb20vbWluaWZvcmdlL2Jhc2UvZW52cy9ybC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxrL29wdC9ob21lYnJldy9DYXNrcm9vbS9taW5pZm9yZ2UvYmFzZS9lbnZzL3JsL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAHp7TPvtI9zyJOhQ/Hp7TPvtI9zyJOhQ/Hp7TPvtI9zyJOhQ/Hp7TPvtI9zyJOhQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAEXPDPklNu7+07Is+j3aHv6J9or89xtK/U7w/vqwJr79j/7M/t72xPyFDoL8fbWs/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAentM++0j3PIk6FD+uL6E8UIVFuw2vljwentM++0j3PIk6FD+uL6E8UIVFuw2vljwentM++0j3PIk6FD+uL6E8UIVFuw2vljwentM++0j3PIk6FD+uL6E8UIVFuw2vljyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.4133157 0.03018617 0.5790182 ]\n [0.4133157 0.03018617 0.5790182 ]\n [0.4133157 0.03018617 0.5790182 ]\n [0.4133157 0.03018617 0.5790182 ]]", "desired_goal": "[[ 0.38173726 -1.463296 0.27329028]\n [-1.0583056 -1.269459 -1.6466748 ]\n [-0.18724184 -1.3674827 1.4062313 ]\n [ 1.3886021 -1.2520486 0.9196338 ]]", "observation": "[[ 0.4133157 0.03018617 0.5790182 0.01967606 -0.00301393 0.01839402]\n [ 0.4133157 0.03018617 0.5790182 0.01967606 -0.00301393 0.01839402]\n [ 0.4133157 0.03018617 0.5790182 0.01967606 -0.00301393 0.01839402]\n [ 0.4133157 0.03018617 0.5790182 0.01967606 -0.00301393 0.01839402]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPZ1qGqxDI0o+6nIdPZ1qGqxDI0o+6nIdPZ1qGqxDI0o+6nIdPZ1qGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAATgEju8ZDuj3XuEs+hw8+PYHi3rx0W4E9zKLPvQRiEb7CjJw9VTNHPeIY6L1J7Sw+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09nWoarEMjSj4AAAAAAAAAgAAAAADqch09nWoarEMjSj4AAAAAAAAAgAAAAADqch09nWoarEMjSj4AAAAAAAAAgAAAAADqch09nWoarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1943899e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943899e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943899e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943899e-12 1.9740014e-01]]", "desired_goal": "[[-0.00248726 0.09094958 0.1989473 ]\n [ 0.04640153 -0.02720761 0.06316271]\n [-0.10138473 -0.14197546 0.07644035]\n [ 0.04863294 -0.11332871 0.16887392]]", "observation": "[[ 3.8439669e-02 -2.1943899e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943899e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943899e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943899e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIiXjr/Ntl1b+UhpRSlIwBbJRLMowBdJRHQIx/ghr30wt1fZQoaAZoCWgPQwj+Cpkrg2ruv5SGlFKUaBVLMmgWR0CMfy1dgOSXdX2UKGgGaAloD0MIjUXT2cng6L+UhpRSlGgVSzJoFkdAjH7ZOSGJvnV9lChoBmgJaA9DCDW4rS08b/G/lIaUUpRoFUsyaBZHQIx+hWxQizN1fZQoaAZoCWgPQwhpkIKnkGvzv5SGlFKUaBVLMmgWR0CMgQM3qAz6dX2UKGgGaAloD0MIt9CVCFR/77+UhpRSlGgVSzJoFkdAjICuafBeonV9lChoBmgJaA9DCABzLVqAtum/lIaUUpRoFUsyaBZHQIyAWoLofSx1fZQoaAZoCWgPQwjt2AjE63rov5SGlFKUaBVLMmgWR0CMgAbDuSfUdX2UKGgGaAloD0MITS1b64sE9L+UhpRSlGgVSzJoFkdAjIKOC5EtunV9lChoBmgJaA9DCBk5C3va4de/lIaUUpRoFUsyaBZHQIyCOTxG2Cx1fZQoaAZoCWgPQwg5DVGFP0Prv5SGlFKUaBVLMmgWR0CMgeUoKD02dX2UKGgGaAloD0MIL/zgfOrY5L+UhpRSlGgVSzJoFkdAjIGRQrMC93V9lChoBmgJaA9DCMfzGVBvRum/lIaUUpRoFUsyaBZHQIyED7ZWaMJ1fZQoaAZoCWgPQwjhDWlU4GThv5SGlFKUaBVLMmgWR0CMg7rtVrAQdX2UKGgGaAloD0MImzdOCvMe5L+UhpRSlGgVSzJoFkdAjINnDR+jM3V9lChoBmgJaA9DCOqvV1hwP/W/lIaUUpRoFUsyaBZHQIyDExj8UEh1fZQoaAZoCWgPQwhZGY18XvHqv5SGlFKUaBVLMmgWR0CMhZuF6AvtdX2UKGgGaAloD0MIllmEYivo5L+UhpRSlGgVSzJoFkdAjIVGr0aqCHV9lChoBmgJaA9DCOGbps8OuNm/lIaUUpRoFUsyaBZHQIyE8uWa+ex1fZQoaAZoCWgPQwinyYy3ld7iv5SGlFKUaBVLMmgWR0CMhJ8ZUDMedX2UKGgGaAloD0MIbolccAb/5b+UhpRSlGgVSzJoFkdAjIcXsw+MZXV9lChoBmgJaA9DCJQu/UtSWfa/lIaUUpRoFUsyaBZHQIyGwvnKW9l1fZQoaAZoCWgPQwgxCKwcWmTtv5SGlFKUaBVLMmgWR0CMhm8h9srNdX2UKGgGaAloD0MI/n+cMGH097+UhpRSlGgVSzJoFkdAjIYbT+ee4HV9lChoBmgJaA9DCJwwYTQr2+i/lIaUUpRoFUsyaBZHQIyIotWdVed1fZQoaAZoCWgPQwiGyypsBrjVv5SGlFKUaBVLMmgWR0CMiE3uNPxhdX2UKGgGaAloD0MIDk5Ev7b+6L+UhpRSlGgVSzJoFkdAjIf6FEiMYXV9lChoBmgJaA9DCN5X5ULlX+O/lIaUUpRoFUsyaBZHQIyHpkupS751fZQoaAZoCWgPQwgN38K68W7rv5SGlFKUaBVLMmgWR0CMiiXeFcptdX2UKGgGaAloD0MIlYJuL2nM8b+UhpRSlGgVSzJoFkdAjInRSYPXkHV9lChoBmgJaA9DCExxVdl3Rdy/lIaUUpRoFUsyaBZHQIyJfYcvM8p1fZQoaAZoCWgPQwheK6G7JM71v5SGlFKUaBVLMmgWR0CMiSnQ6ZH/dX2UKGgGaAloD0MIvRx23zE86r+UhpRSlGgVSzJoFkdAjIvCTUy57XV9lChoBmgJaA9DCLsJvmn6LPi/lIaUUpRoFUsyaBZHQIyLbUI9kjJ1fZQoaAZoCWgPQwiAn3HhQEjev5SGlFKUaBVLMmgWR0CMixleWv8qdX2UKGgGaAloD0MIyEEJM23/2L+UhpRSlGgVSzJoFkdAjIrFkhA4XHV9lChoBmgJaA9DCB42kZkLnPa/lIaUUpRoFUsyaBZHQIyNT1Iy0rt1fZQoaAZoCWgPQwj8471qZQL1v5SGlFKUaBVLMmgWR0CMjPqj8DSxdX2UKGgGaAloD0MIWoP3VblQ77+UhpRSlGgVSzJoFkdAjIymuLaVU3V9lChoBmgJaA9DCOxRuB6F6+2/lIaUUpRoFUsyaBZHQIyMUvRJEpl1fZQoaAZoCWgPQwh4RIXq5iLzv5SGlFKUaBVLMmgWR0CMjtpoK2KEdX2UKGgGaAloD0MIw7rx7sjY7b+UhpRSlGgVSzJoFkdAjI6FvAGjbnV9lChoBmgJaA9DCCMVxhaCHOm/lIaUUpRoFUsyaBZHQIyOMfxMFll1fZQoaAZoCWgPQwhUOIJUih32v5SGlFKUaBVLMmgWR0CMjd4Ju2qldX2UKGgGaAloD0MIjx1U4jqG9b+UhpRSlGgVSzJoFkdAjJBhEroW6HV9lChoBmgJaA9DCL6kMVpHVem/lIaUUpRoFUsyaBZHQIyQDE5yU9p1fZQoaAZoCWgPQwh07KAS13H6v5SGlFKUaBVLMmgWR0CMj7hvR7Z4dX2UKGgGaAloD0MI/d07akwI6r+UhpRSlGgVSzJoFkdAjI9kfcN6PnV9lChoBmgJaA9DCCAm4UIeQQDAlIaUUpRoFUsyaBZHQIyR4Hqu8sd1fZQoaAZoCWgPQwi3YRQEj28AwJSGlFKUaBVLMmgWR0CMkYvCdjG2dX2UKGgGaAloD0MIhugQOBKo9r+UhpRSlGgVSzJoFkdAjJE3vYvnKXV9lChoBmgJaA9DCLaBO1CnfPC/lIaUUpRoFUsyaBZHQIyQ5AIIF/x1fZQoaAZoCWgPQwiw/s9hvrzZv5SGlFKUaBVLMmgWR0CMk25xzaK2dX2UKGgGaAloD0MIzEI7p1ng8L+UhpRSlGgVSzJoFkdAjJMZsj3VTnV9lChoBmgJaA9DCO8dNSbEHPC/lIaUUpRoFUsyaBZHQIySxdyDIzZ1fZQoaAZoCWgPQwg3VIzzN6Hvv5SGlFKUaBVLMmgWR0CMknH5rP+odX2UKGgGaAloD0MImtGPhlNm9b+UhpRSlGgVSzJoFkdAjJT5lOGj9HV9lChoBmgJaA9DCOFdLuI7seS/lIaUUpRoFUsyaBZHQIyUpNCZ4Od1fZQoaAZoCWgPQwhklj0JbM72v5SGlFKUaBVLMmgWR0CMlFD8cdYGdX2UKGgGaAloD0MIg4b+CS6W9b+UhpRSlGgVSzJoFkdAjJP9IoVmBnV9lChoBmgJaA9DCHTOT3EceOS/lIaUUpRoFUsyaBZHQIyWibc45tF1fZQoaAZoCWgPQwjF46JaRJTiv5SGlFKUaBVLMmgWR0CMljS5y2hJdX2UKGgGaAloD0MInNuEe2Xe9b+UhpRSlGgVSzJoFkdAjJXg31jAi3V9lChoBmgJaA9DCFBVoYFYNuO/lIaUUpRoFUsyaBZHQIyVjRIBikR1fZQoaAZoCWgPQwhFLGLYYewAwJSGlFKUaBVLMmgWR0CMmAwGnn+ydX2UKGgGaAloD0MIBmfw94sZAsCUhpRSlGgVSzJoFkdAjJe3SBshxHV9lChoBmgJaA9DCFA6kWCqGfG/lIaUUpRoFUsyaBZHQIyXYzN2TxJ1fZQoaAZoCWgPQwhxyXGndLDmv5SGlFKUaBVLMmgWR0CMlw9ic5KfdX2UKGgGaAloD0MIiesYV1yc5b+UhpRSlGgVSzJoFkdAjJmN+9allHV9lChoBmgJaA9DCJDY7h6ge/a/lIaUUpRoFUsyaBZHQIyZOS8rZrZ1fZQoaAZoCWgPQwgM5q+QubLjv5SGlFKUaBVLMmgWR0CMmOTsY2sJdX2UKGgGaAloD0MIUMjO29js6L+UhpRSlGgVSzJoFkdAjJiRGc4HX3V9lChoBmgJaA9DCHMPCd/7m/C/lIaUUpRoFUsyaBZHQIybFyJbdJt1fZQoaAZoCWgPQwgCnN7F+3H9v5SGlFKUaBVLMmgWR0CMmsI5YHPedX2UKGgGaAloD0MIh/iHLT3a8b+UhpRSlGgVSzJoFkdAjJpuclPac3V9lChoBmgJaA9DCKeufJbnQeq/lIaUUpRoFUsyaBZHQIyaGrMkhRt1fZQoaAZoCWgPQwhT6/1GO+7pv5SGlFKUaBVLMmgWR0CMnJ/iHZbqdX2UKGgGaAloD0MIf7+YLVmV9L+UhpRSlGgVSzJoFkdAjJxK//NqxnV9lChoBmgJaA9DCF/Rrdf0oN6/lIaUUpRoFUsyaBZHQIyb9zIV/MJ1fZQoaAZoCWgPQwgmqyLcZNTpv5SGlFKUaBVLMmgWR0CMm6NdZ7ojdX2UKGgGaAloD0MISwaAKm7c/L+UhpRSlGgVSzJoFkdAjJ4ojfNzKnV9lChoBmgJaA9DCNk+5C1XP+S/lIaUUpRoFUsyaBZHQIyd07+1jRV1fZQoaAZoCWgPQwgouFhRg+nsv5SGlFKUaBVLMmgWR0CMnX/m1YyPdX2UKGgGaAloD0MIMzSeCOI89b+UhpRSlGgVSzJoFkdAjJ0sG5c1O3V9lChoBmgJaA9DCOT09XzN8vO/lIaUUpRoFUsyaBZHQIyfsC7sfJV1fZQoaAZoCWgPQwgAxF29isz2v5SGlFKUaBVLMmgWR0CMn1t1IRRNdX2UKGgGaAloD0MIMLlRZK1h+r+UhpRSlGgVSzJoFkdAjJ8HkLhJiHV9lChoBmgJaA9DCOc1donqLfG/lIaUUpRoFUsyaBZHQIyes8YAKfF1fZQoaAZoCWgPQwgdVrjlI6nhv5SGlFKUaBVLMmgWR0CMoTechC+ldX2UKGgGaAloD0MIM4y7QbTW4b+UhpRSlGgVSzJoFkdAjKDiy6cy33V9lChoBmgJaA9DCGzOwTOhSea/lIaUUpRoFUsyaBZHQIygju8brC51fZQoaAZoCWgPQwj9hokGKbjzv5SGlFKUaBVLMmgWR0CMoDsWweNldX2UKGgGaAloD0MILZW3I5xW+b+UhpRSlGgVSzJoFkdAjKK9a2WpqHV9lChoBmgJaA9DCGtFm+PcJuG/lIaUUpRoFUsyaBZHQIyiaKk2xY91fZQoaAZoCWgPQwjgaTLjbaXmv5SGlFKUaBVLMmgWR0CMohTWoWHldX2UKGgGaAloD0MIFFysqMG067+UhpRSlGgVSzJoFkdAjKHBAGB4EHV9lChoBmgJaA9DCKN5AIv8eva/lIaUUpRoFUsyaBZHQIykQ/JNj9Z1fZQoaAZoCWgPQwhpjqz8Mpj2v5SGlFKUaBVLMmgWR0CMo+8kD6nBdX2UKGgGaAloD0MI34rEBDV827+UhpRSlGgVSzJoFkdAjKObcfvF33V9lChoBmgJaA9DCPZ698d71du/lIaUUpRoFUsyaBZHQIyjR4GD+R51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "macOS-13.1-arm64-arm-64bit Darwin Kernel Version 22.2.0: Fri Nov 11 02:04:44 PST 2022; root:xnu-8792.61.2~4/RELEASE_ARM64_T8103", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "1.11.0", "GPU Enabled": "False", "Numpy": "1.21.2", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (313 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -1.199990742234513, "std_reward": 0.47927332857499594, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-09T18:00:05.884826"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:215856c4fd02baef80b617419f1f9c72f1bb7d59c77be64deb51ba8791c7ebbd
|
3 |
+
size 2381
|