amezasor commited on
Commit
464a031
·
verified ·
1 Parent(s): b9143fb

model card - initial commit

Browse files
Files changed (1) hide show
  1. README.md +293 -3
README.md CHANGED
@@ -1,3 +1,293 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: text-generation
3
+ inference: false
4
+ license: apache-2.0
5
+ # datasets:
6
+ metrics:
7
+ - code_eval
8
+ library_name: transformers
9
+ tags:
10
+ - language
11
+ - granite-3.0
12
+ model-index:
13
+ - name: granite-3.0-1b-a400m-base
14
+ results:
15
+ - task:
16
+ type: text-generation
17
+ dataset:
18
+ type: human-exams
19
+ name: MMLU
20
+ metrics:
21
+ - name: pass@1
22
+ type: pass@1
23
+ value: 25.69
24
+ veriefied: false
25
+ - task:
26
+ type: text-generation
27
+ dataset:
28
+ type: human-exams
29
+ name: MMLU-Pro
30
+ metrics:
31
+ - name: pass@1
32
+ type: pass@1
33
+ value: 11.38
34
+ veriefied: false
35
+ - task:
36
+ type: text-generation
37
+ dataset:
38
+ type: human-exams
39
+ name: AGI-Eval
40
+ metrics:
41
+ - name: pass@1
42
+ type: pass@1
43
+ value: 19.96
44
+ veriefied: false
45
+ - task:
46
+ type: text-generation
47
+ dataset:
48
+ type: commonsense
49
+ name: WinoGrande
50
+ metrics:
51
+ - name: pass@1
52
+ type: pass@1
53
+ value: 62.43
54
+ veriefied: false
55
+ - task:
56
+ type: text-generation
57
+ dataset:
58
+ type: commonsense
59
+ name: OBQA
60
+ metrics:
61
+ - name: pass@1
62
+ type: pass@1
63
+ value: 39.00
64
+ veriefied: false
65
+ - task:
66
+ type: text-generation
67
+ dataset:
68
+ type: commonsense
69
+ name: SIQA
70
+ metrics:
71
+ - name: pass@1
72
+ type: pass@1
73
+ value: 35.76
74
+ veriefied: false
75
+ - task:
76
+ type: text-generation
77
+ dataset:
78
+ type: commonsense
79
+ name: PIQA
80
+ metrics:
81
+ - name: pass@1
82
+ type: pass@1
83
+ value: 75.35
84
+ veriefied: false
85
+ - task:
86
+ type: text-generation
87
+ dataset:
88
+ type: commonsense
89
+ name: Hellaswag
90
+ metrics:
91
+ - name: pass@1
92
+ type: pass@1
93
+ value: 64.92
94
+ veriefied: false
95
+ - task:
96
+ type: text-generation
97
+ dataset:
98
+ type: reading-comprehension
99
+ name: TruthfulQA
100
+ metrics:
101
+ - name: pass@1
102
+ type: pass@1
103
+ value: 39.49
104
+ veriefied: false
105
+ - task:
106
+ type: text-generation
107
+ dataset:
108
+ type: reading-comprehension
109
+ name: ARC-C
110
+ metrics:
111
+ - name: pass@1
112
+ type: pass@1
113
+ value: 38.14
114
+ veriefied: false
115
+ - task:
116
+ type: text-generation
117
+ dataset:
118
+ type: reading-comprehension
119
+ name: GPQA
120
+ metrics:
121
+ - name: pass@1
122
+ type: pass@1
123
+ value: 24.41
124
+ veriefied: false
125
+ - task:
126
+ type: text-generation
127
+ dataset:
128
+ type: reading-comprehension
129
+ name: BBH
130
+ metrics:
131
+ - name: pass@1
132
+ type: pass@1
133
+ value: 29.84
134
+ veriefied: false
135
+ - task:
136
+ type: text-generation
137
+ dataset:
138
+ type: code
139
+ name: HumanEval
140
+ metrics:
141
+ - name: pass@1
142
+ type: pass@1
143
+ value: 21.95
144
+ veriefied: false
145
+ - task:
146
+ type: text-generation
147
+ dataset:
148
+ type: code
149
+ name: MBPP
150
+ metrics:
151
+ - name: pass@1
152
+ type: pass@1
153
+ value: 23.20
154
+ veriefied: false
155
+ - task:
156
+ type: text-generation
157
+ dataset:
158
+ type: math
159
+ name: GSM8K
160
+ metrics:
161
+ - name: pass@1
162
+ type: pass@1
163
+ value: 22.82
164
+ veriefied: false
165
+ - task:
166
+ type: text-generation
167
+ dataset:
168
+ type: math
169
+ name: MATH
170
+ metrics:
171
+ - name: pass@1
172
+ type: pass@1
173
+ value: 8.96
174
+ veriefied: false
175
+ - task:
176
+ type: text-generation
177
+ dataset:
178
+ type: multilingual
179
+ name: MGSM
180
+ metrics:
181
+ - name: pass@1
182
+ type: pass@1
183
+ value: 8.20
184
+ veriefied: false
185
+ ---
186
+ <!-- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/62cd5057674cdb524450093d/1hzxoPwqkBJXshKVVe6_9.png) -->
187
+ <!-- ![image/png](granite-3_0-language-models_Group_1.png) -->
188
+
189
+ # Granite-3.0-1B-A400M-Base
190
+
191
+ ## Model Summary
192
+ **Granite-3.0-1B-A400M-Base** is an open-source decoder-only language model from IBM Research that supports a variety of text-to-text generation tasks (e.g., question-answering, text-completion). **Granite-3.0-1B-A400M-Base** is trained from scratch and follows a two-phase training strategy. In the first phase, it is trained on 8 trillion tokens sourced from diverse domains, including natural language, math, code, and safety. During the second phase, it is further trained on 2 trillion tokens using a carefully curated mix of high-quality data, aiming to enhance its performance on specific tasks.
193
+
194
+ <!-- **Granite-3.0-1B-A400M-Base** is an open-source decoder-only language model from IBM Research that supports a variety of text-to-text generation tasks (e.g., question-answering, text-completion). The particular characteristics of this model, includig a Mixture of Experts(MoE) architecture, small size, and open-source nature, make it an ideal baseline for finetuning other models that require large model capacity while maintaining computational efficiency. **Granite-3.0-1B-A400M-Base** is trained from scratch and follows a two-phase training strategy. In the first phase, it is trained on 8 trillion tokens sourced from diverse domains, including natural language, math, code, and safety. During the second phase, it is further trained on 2 trillion tokens using a carefully curated mix of high-quality data, aiming to enhance its performance on specific tasks. -->
195
+
196
+ <!-- Use Cases:
197
+ Dense LLMs: Suitable for scenarios where fast inference with a smaller model size is prioritized, such as real-time applications or deployment on resource-constrained devices.
198
+ MoE LLMs: Ideal for situations where large model capacity is needed while maintaining computational efficiency, like handling complex tasks or large datasets with high computational demands -->
199
+
200
+ <!-- ====Features==== -->
201
+ <!-- MoE will be faster
202
+ Demployment resources (memory): same -->
203
+
204
+
205
+ - **Developers:** IBM Research
206
+ - **GitHub Repository:** [ibm-granite/granite-language-models](https://github.com/ibm-granite/granite-language-models)
207
+ - **Paper:** [Granite Language Models](https://) <!-- TO DO: Update github repo ling whe it is ready -->
208
+ - **Release Date**: October 21st, 2024
209
+ - **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0).
210
+
211
+ ## Supported Languages
212
+ English, German, Spanish, French, Japanese, Portuguese, Arabic, Czech, Italian, Korean, Dutch, Chinese (Simplified)
213
+
214
+ ## Usage
215
+ ### Intended use
216
+ Prominent use cases of LLMs in text-to-text generation include summarization, text classification, extraction, question-answering, and more. All Granite Base models are able to handle these tasks as they were trained on a large amount of data from various domains. Moreover, all Granite language model can serve as baseline to create specialized models for specific application scenarios.
217
+
218
+ ### Generation
219
+ This is a simple example of how to use **Granite-3.0-1B-A400M-Base** model.
220
+
221
+ Install the following libraries:
222
+
223
+ ```shell
224
+ pip install torch torchvision torchaudio
225
+ pip install accelerate
226
+ pip install transformers
227
+ ```
228
+ Then, copy the code snippet below to run the example.
229
+
230
+ ```python
231
+ from transformers import AutoModelForCausalLM, AutoTokenizer
232
+ device = "auto"
233
+ model_path = "ibm-granite/granite-3.0-1b-a400m-base"
234
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
235
+ # drop device_map if running on CPU
236
+ model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
237
+ model.eval()
238
+ # change input text as desired
239
+ input_text = "Where is the MIT-IBM Watson AI Lab located?"
240
+ # tokenize the text
241
+ input_tokens = tokenizer(input_text, return_tensors="pt").to(device)
242
+ # generate output tokens
243
+ output = model.generate(**input_tokens,
244
+ max_length=4000)
245
+ # decode output tokens into text
246
+ output = tokenizer.batch_decode(output)
247
+ # print output
248
+ print(output)
249
+ ```
250
+
251
+ ## Model Architeture
252
+ **Granite-3.0-1B-A400M-Base** is based on a decoder-only sparse Mixture of Experts(MoE) transformer architecture. Core components of this architecture are: Fine-grained Experts, Dropless Token Routing, and Load Balancing Loss.
253
+
254
+ | Model | 2B Dense | 8B Dense | 1B MoE | 3B MoE |
255
+ | :-------- | :--------| :--------| :-------- | :--------|
256
+ | Embedding size | 2048 | 4096 | **1024** | 1536 |
257
+ | Number of layers | 40 | 40 | **24** | 32 |
258
+ | Attention head size | 64 | 128 | **64** | 64 |
259
+ | Number of attention heads | 32 | 32 | **16** | 24 |
260
+ | Number of KV heads | 8 | 8 | **8** | 8 |
261
+ | MLP hidden size | 8192 | 12800 | **512** | 512 |
262
+ | MLP activation | SwiGLU | SwiGLU | **SwiGLU** | SwiGLU |
263
+ | Number of Experts | — | — | **32** | 40 |
264
+ | MoE TopK | — | — | **8** | 8 |
265
+ | Initialization std | 0.1 | 0.1 | **0.1** | 0.1 |
266
+ | Sequence Length | 4096 | 4096 | **4096** | 4096 |
267
+ | Position Embedding | RoPE | RoPE | **RoPE** | RoPE |
268
+ | # Paremeters | 2.5B | 8.1B | **1.3B** | 3.3B |
269
+ | # Active Parameters | 2.5B | 8.1B | **400M** | 800M |
270
+ | # Training tokens | 12T | 12T | **10T** | 10T |
271
+
272
+ <!-- TO DO: To be completed once the paper is ready -->
273
+ ## Training Data
274
+ This model is trained on a mix of open-source and proprietary datasets.
275
+
276
+ <!-- CHECK: removed Vela, only talk about blue-vela-->
277
+ ## Infrastructure
278
+ We train the Granite Language models using IBM's super computing cluster, Blue Vela, which is outfitted with NVIDIA H100 GPUs. This cluster provides a scalable and efficient infrastructure for training our models over thousands of GPUs.
279
+
280
+ ## Ethical Considerations and Limitations
281
+ The use of Large Language Models involves risks and ethical considerations people must be aware of, including but not limited to: bias and fairness, misinformation, and autonomous decision-making. **Granite-3.0-1B-A400M-Base** model is not the exception in this regard. Even though this model is suited for multiple generative AI tasks, it has not undergone any safety alignment, there it may produce problematic outputs. Additionally, it remains uncertain whether smaller models might exhibit increased susceptibility to hallucination in generation scenarios by copying text verbatim from the training dataset due to their reduced sizes and memorization capacities. This aspect is currently an active area of research, and we anticipate more rigorous exploration, comprehension, and mitigations in this domain. Regarding ethics, a latent risk associated with all Large Language Models is their malicious utilization. We urge the community to use **Granite-3.0-1B-A400M-Base** model with ethical intentions and in a responsible way.
282
+
283
+ ## Citation
284
+ ```
285
+ @misc{granite-models,
286
+ author = {author 1, author2, ...},
287
+ title = {},
288
+ journal = {},
289
+ volume = {},
290
+ year = {2024},
291
+ url = {https://arxiv.org/abs/0000.00000},
292
+ }
293
+ ```