|
--- |
|
license: cdla-permissive-2.0 |
|
--- |
|
|
|
# Model Card for TTM |
|
|
|
TTM, also known as TinyTimeMixer, are compact pre-trained models for Time-Series Forecasting, open-sourced by IBM Research. |
|
**With less than 1 Million parameters, TTM introduces the notion of the first-ever “tiny” pre-trained models for Time-Series Forecasting.** |
|
|
|
TTM outperforms several popular benchmarks demanding billions of parameters in zero-shot and few-shot forecasting. TTM is pre-trained on diverse public time-series datasets which |
|
can be easily fine-tuned for your target data. Refer to our [paper](https://arxiv.org/pdf/2401.03955.pdf) for more details. |
|
|
|
**Note that zeroshot, fine-tuning and inference tasks using TTM can easily be executed in 1 GPU machine or in laptops too!!** |
|
|
|
|
|
## Benchmark Highlights: |
|
|
|
TTM outperforms pre-trained GPT4TS (NeurIPS 23) by … |
|
|
|
TTM outperforms pre-trained LLMTime (NeurIPS 23) by .. |
|
|
|
TTM outperforms pre-trained Time-LLM (NeurIPS 23) by .. |
|
|
|
TTM outperform pre-trained MOIRAI by … |
|
|
|
TTM outperforms other popular benchmarks by …. |
|
|
|
TTM also outperforms the hard statistical baselines (Statistical ensemble and S-Naive) in M4-hourly dataset which pretrained TS models are finding hard to outperform. |
|
|
|
## Model Description |
|
|
|
TTM falls under the category of “focused pre-trained models”, wherein each pre-trained TTM is tailored for a particular forecasting |
|
setting (governed by the context length and forecast length). Instead of building one massive model supporting all forecasting settings, |
|
we opt for the approach of constructing smaller pre-trained models, each focusing on a specific forecasting setting, thereby |
|
yielding more accurate results. Furthermore, this approach ensures that our models remain extremely small and exceptionally fast, |
|
facilitating easy deployment without demanding a ton of resources. |
|
|
|
Hence, in this model card, we plan to release several pre-trained |
|
TTMs that can cater to many common forecasting settings in practice. Additionally, we have released our source code along with |
|
our pretraining scripts that users can utilize to pretrain models on their own. Pretraining TTMs is very easy and fast, taking |
|
only 3-6 hours using 6 A100 GPUs, as opposed to several days or weeks in traditional approaches. |
|
|
|
## Model Releases (along with the branch name where the models are stored): |
|
|
|
- 512-96: Given the last 512 time-points (i.e. context length), this model can forecast the next 96 time-points (i.e. forecast length) |
|
in future. Recommended for hourly and minutely forecasts (Ex. resolutions 5 min, 10 min, 15 min, etc) (branch name: main) |
|
|
|
- 1024-96: Given the last 1024 time-points (i.e. context length), this model can forecast the next 96 time-points (i.e. forecast length) |
|
in future. Recommended for hourly and minutely forecasts (Ex. resolutions 5 min, 10 min, 15 min, etc) (branch name: 1024-96-v1) |
|
|
|
- Stay tuned for more models ! |
|
|
|
## Model Details |
|
|
|
For more details on TTM architecture and benchmarks, refer to our [paper](https://arxiv.org/pdf/2401.03955.pdf). |
|
|
|
TTM-1 currently supports 2 modes: |
|
|
|
- Zeroshot forecasting: Directly apply the pre-trained model on your target data to get an initial forecast (with no training). |
|
|
|
- Finetuned forecasting: Finetune the pre-trained model with your target data to further improve the forecast. |
|
|
|
**Since, TTM models are extremely small and fast, it is practically very easy to finetune the model with your available target data to |
|
get more accurate forecasts.** |
|
|
|
The current release supports multivariate forecasting via both channel independence and channel-mixing approaches. |
|
Decoder Channel-Mixing can be enabled during fine-tuning for capturing strong channel-correlation patterns across |
|
time-series variates, critical capability lacking in existing counterparts. |
|
|
|
In addition, TTM also supports exogenous infusion and categorical data which is not released as part of this version. |
|
Stay tuned for these extended features. |
|
|
|
## Recommended Use |
|
1. Users have to standard scale their data before feeding it to the model (Refer to TSP, our data processing utility for data scaling.) |
|
2. Enabling any upsampling or prepending zeros to virtually increase the context length is not recommended and will |
|
impact the model performance. |
|
|
|
|
|
### Model Sources [optional] |
|
|
|
<!-- Provide the basic links for the model. --> |
|
|
|
- **Repository:** [More Information Needed] |
|
- **Paper [optional]:** [More Information Needed] |
|
|
|
|
|
## Uses |
|
|
|
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> |
|
|
|
### Direct Use |
|
|
|
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> |
|
|
|
[More Information Needed] |
|
|
|
### Downstream Use [optional] |
|
|
|
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> |
|
|
|
[More Information Needed] |
|
|
|
## How to Get Started with the Model |
|
|
|
[Point notebooks] |
|
|
|
## Benchmarks |
|
|
|
## Training Data |
|
|
|
The TTM models were trained on a collection of datasets from the Monash Time Series Forecasting repository. The datasets used include: |
|
- Australian Electricity Demand: https://zenodo.org/records/4659727 |
|
- Australian Weather: https://zenodo.org/records/4654822 |
|
- Bitcoin dataset: https://zenodo.org/records/5122101 |
|
- KDD Cup 2018 dataset: https://zenodo.org/records/4656756 |
|
- London Smart Meters: https://zenodo.org/records/4656091 |
|
- Saugeen River Flow: https://zenodo.org/records/4656058 |
|
- Solar Power: https://zenodo.org/records/4656027 |
|
- Sunspots: https://zenodo.org/records/4654722 |
|
- Solar: https://zenodo.org/records/4656144 |
|
- US Births: https://zenodo.org/records/4656049 |
|
- Wind Farms Production data: https://zenodo.org/records/4654858 |
|
- Wind Power: https://zenodo.org/records/4656032 |
|
|
|
|
|
## Citation [optional] |
|
Kindly cite the following paper, if you intend to use our model or its associated architectures/approaches in your |
|
work |
|
|
|
**BibTeX:** |
|
|
|
@article{ekambaram2024ttms, |
|
title={TTMs: Fast Multi-level Tiny Time Mixers for Improved Zero-shot and Few-shot Forecasting of Multivariate Time Series}, |
|
author={Ekambaram, Vijay and Jati, Arindam and Nguyen, Nam H and Dayama, Pankaj and Reddy, Chandra and Gifford, Wesley M and Kalagnanam, Jayant}, |
|
journal={arXiv preprint arXiv:2401.03955}, |
|
year={2024} |
|
} |
|
|
|
**APA:** |
|
|
|
Ekambaram, V., Jati, A., Nguyen, N. H., Dayama, P., Reddy, C., Gifford, W. M., & Kalagnanam, J. (2024). TTMs: Fast Multi-level Tiny Time Mixers for Improved Zero-shot and Few-shot Forecasting of Multivariate Time Series. arXiv preprint arXiv:2401.03955. |
|
|
|
|
|
## Model Card Authors [optional] |
|
|
|
[More Information Needed] |
|
|
|
## Model Card Contact |
|
|
|
[More Information Needed] |
|
|
|
## IBM Public Repository Disclosure: |
|
|
|
All content in this repository including code has been provided by IBM under the associated |
|
open source software license and IBM is under no obligation to provide enhancements, |
|
updates, or support. IBM developers produced this code as an |
|
open source project (not as an IBM product), and IBM makes no assertions as to |
|
the level of quality nor security, and will not be maintaining this code going forward. |