hanxLi commited on
Commit
5769604
·
1 Parent(s): 4207411

Uploading trained parameters, config and model related images

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ multi_temporal_crop_classification.png filter=lfs diff=lfs merge=lfs -text
multi_temporal_crop_classification.png ADDED

Git LFS Details

  • SHA256: e1306276140e4c25b39d192b780430a5725b473ffb1644b6b674dd0be87e0be1
  • Pointer size: 132 Bytes
  • Size of remote file: 1.23 MB
multi_temporal_crop_classification_Prithvi_100M.py ADDED
@@ -0,0 +1,394 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ dist_params = dict(backend='nccl')
2
+ log_level = 'INFO'
3
+ load_from = None
4
+ resume_from = None
5
+ cudnn_benchmark = True
6
+ custom_imports = dict(imports=['geospatial_fm'])
7
+ num_frames = 3
8
+ img_size = 224
9
+ num_workers = 2
10
+ pretrained_weights_path = '/home/ubuntu/hls-loss-weights/Prithvi_100M.pt'
11
+ num_layers = 6
12
+ patch_size = 16
13
+ embed_dim = 768
14
+ num_heads = 8
15
+ tubelet_size = 1
16
+ epochs = 80
17
+ eval_epoch_interval = 2
18
+ experiment = 'multiclass_exp_newSplit'
19
+ work_dir = '/home/ubuntu/clark_gfm_eval/multiclass_exp_newSplit'
20
+ save_path = '/home/ubuntu/clark_gfm_eval/multiclass_exp_newSplit'
21
+ gpu_ids = range(0, 1)
22
+ dataset_type = 'GeospatialDataset'
23
+ data_root = '/home/ubuntu/hls_cdl_reclassed/'
24
+ img_norm_cfg = dict(
25
+ means=[
26
+ 494.905781, 815.239594, 924.335066, 2968.881459, 2634.621962,
27
+ 1739.579917, 494.905781, 815.239594, 924.335066, 2968.881459,
28
+ 2634.621962, 1739.579917, 494.905781, 815.239594, 924.335066,
29
+ 2968.881459, 2634.621962, 1739.579917
30
+ ],
31
+ stds=[
32
+ 284.925432, 357.84876, 575.566823, 896.601013, 951.900334, 921.407808,
33
+ 284.925432, 357.84876, 575.566823, 896.601013, 951.900334, 921.407808,
34
+ 284.925432, 357.84876, 575.566823, 896.601013, 951.900334, 921.407808
35
+ ])
36
+ splits = dict(
37
+ train=
38
+ '/home/ubuntu/hls-foundation-os/fine-tuning-examples/data_splits/crop_classification/training_data.txt',
39
+ val=
40
+ '/home/ubuntu/hls-foundation-os/fine-tuning-examples/data_splits/crop_classification/validation_data.txt',
41
+ test=
42
+ '/home/ubuntu/hls-foundation-os/fine-tuning-examples/data_splits/crop_classification/validation_data.txt'
43
+ )
44
+ bands = [0, 1, 2, 3, 4, 5]
45
+ tile_size = 224
46
+ orig_nsize = 512
47
+ crop_size = (224, 224)
48
+ train_pipeline = [
49
+ dict(type='LoadGeospatialImageFromFile', to_float32=True),
50
+ dict(type='LoadGeospatialAnnotations', reduce_zero_label=True),
51
+ dict(type='RandomFlip', prob=0.5),
52
+ dict(type='ToTensor', keys=['img', 'gt_semantic_seg']),
53
+ dict(
54
+ type='TorchNormalize',
55
+ means=[
56
+ 494.905781, 815.239594, 924.335066, 2968.881459, 2634.621962,
57
+ 1739.579917, 494.905781, 815.239594, 924.335066, 2968.881459,
58
+ 2634.621962, 1739.579917, 494.905781, 815.239594, 924.335066,
59
+ 2968.881459, 2634.621962, 1739.579917
60
+ ],
61
+ stds=[
62
+ 284.925432, 357.84876, 575.566823, 896.601013, 951.900334,
63
+ 921.407808, 284.925432, 357.84876, 575.566823, 896.601013,
64
+ 951.900334, 921.407808, 284.925432, 357.84876, 575.566823,
65
+ 896.601013, 951.900334, 921.407808
66
+ ]),
67
+ dict(type='TorchRandomCrop', crop_size=(224, 224)),
68
+ dict(type='Reshape', keys=['img'], new_shape=(6, 3, 224, 224)),
69
+ dict(type='Reshape', keys=['gt_semantic_seg'], new_shape=(1, 224, 224)),
70
+ dict(
71
+ type='CastTensor',
72
+ keys=['gt_semantic_seg'],
73
+ new_type='torch.LongTensor'),
74
+ dict(type='Collect', keys=['img', 'gt_semantic_seg'])
75
+ ]
76
+ val_pipeline = [
77
+ dict(type='LoadGeospatialImageFromFile', to_float32=True),
78
+ dict(type='LoadGeospatialAnnotations', reduce_zero_label=True),
79
+ dict(type='ToTensor', keys=['img', 'gt_semantic_seg']),
80
+ dict(
81
+ type='TorchNormalize',
82
+ means=[
83
+ 494.905781, 815.239594, 924.335066, 2968.881459, 2634.621962,
84
+ 1739.579917, 494.905781, 815.239594, 924.335066, 2968.881459,
85
+ 2634.621962, 1739.579917, 494.905781, 815.239594, 924.335066,
86
+ 2968.881459, 2634.621962, 1739.579917
87
+ ],
88
+ stds=[
89
+ 284.925432, 357.84876, 575.566823, 896.601013, 951.900334,
90
+ 921.407808, 284.925432, 357.84876, 575.566823, 896.601013,
91
+ 951.900334, 921.407808, 284.925432, 357.84876, 575.566823,
92
+ 896.601013, 951.900334, 921.407808
93
+ ]),
94
+ dict(type='TorchRandomCrop', crop_size=(224, 224)),
95
+ dict(type='Reshape', keys=['img'], new_shape=(6, 3, 224, 224)),
96
+ dict(type='Reshape', keys=['gt_semantic_seg'], new_shape=(1, 224, 224)),
97
+ dict(
98
+ type='CastTensor',
99
+ keys=['gt_semantic_seg'],
100
+ new_type='torch.LongTensor'),
101
+ dict(
102
+ type='Collect',
103
+ keys=['img', 'gt_semantic_seg'],
104
+ meta_keys=[
105
+ 'img_info', 'ann_info', 'seg_fields', 'img_prefix', 'seg_prefix',
106
+ 'filename', 'ori_filename', 'img', 'img_shape', 'ori_shape',
107
+ 'pad_shape', 'scale_factor', 'img_norm_cfg', 'gt_semantic_seg'
108
+ ])
109
+ ]
110
+ test_pipeline = [
111
+ dict(type='LoadGeospatialImageFromFile', to_float32=True),
112
+ dict(type='ToTensor', keys=['img']),
113
+ dict(
114
+ type='TorchNormalize',
115
+ means=[
116
+ 494.905781, 815.239594, 924.335066, 2968.881459, 2634.621962,
117
+ 1739.579917, 494.905781, 815.239594, 924.335066, 2968.881459,
118
+ 2634.621962, 1739.579917, 494.905781, 815.239594, 924.335066,
119
+ 2968.881459, 2634.621962, 1739.579917
120
+ ],
121
+ stds=[
122
+ 284.925432, 357.84876, 575.566823, 896.601013, 951.900334,
123
+ 921.407808, 284.925432, 357.84876, 575.566823, 896.601013,
124
+ 951.900334, 921.407808, 284.925432, 357.84876, 575.566823,
125
+ 896.601013, 951.900334, 921.407808
126
+ ]),
127
+ dict(
128
+ type='Reshape',
129
+ keys=['img'],
130
+ new_shape=(6, 3, -1, -1),
131
+ look_up=dict({
132
+ '2': 1,
133
+ '3': 2
134
+ })),
135
+ dict(type='CastTensor', keys=['img'], new_type='torch.FloatTensor'),
136
+ dict(
137
+ type='CollectTestList',
138
+ keys=['img'],
139
+ meta_keys=[
140
+ 'img_info', 'seg_fields', 'img_prefix', 'seg_prefix', 'filename',
141
+ 'ori_filename', 'img', 'img_shape', 'ori_shape', 'pad_shape',
142
+ 'scale_factor', 'img_norm_cfg'
143
+ ])
144
+ ]
145
+ CLASSES = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)
146
+ data = dict(
147
+ samples_per_gpu=2,
148
+ workers_per_gpu=1,
149
+ train=dict(
150
+ type='GeospatialDataset',
151
+ CLASSES=(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13),
152
+ reduce_zero_label=True,
153
+ data_root='/home/ubuntu/hls_cdl_reclassed/',
154
+ img_dir='/home/ubuntu/hls_cdl_reclassed/training_chips',
155
+ ann_dir='/home/ubuntu/hls_cdl_reclassed/training_chips',
156
+ pipeline=[
157
+ dict(type='LoadGeospatialImageFromFile', to_float32=True),
158
+ dict(type='LoadGeospatialAnnotations', reduce_zero_label=True),
159
+ dict(type='RandomFlip', prob=0.5),
160
+ dict(type='ToTensor', keys=['img', 'gt_semantic_seg']),
161
+ dict(
162
+ type='TorchNormalize',
163
+ means=[
164
+ 494.905781, 815.239594, 924.335066, 2968.881459,
165
+ 2634.621962, 1739.579917, 494.905781, 815.239594,
166
+ 924.335066, 2968.881459, 2634.621962, 1739.579917,
167
+ 494.905781, 815.239594, 924.335066, 2968.881459,
168
+ 2634.621962, 1739.579917
169
+ ],
170
+ stds=[
171
+ 284.925432, 357.84876, 575.566823, 896.601013, 951.900334,
172
+ 921.407808, 284.925432, 357.84876, 575.566823, 896.601013,
173
+ 951.900334, 921.407808, 284.925432, 357.84876, 575.566823,
174
+ 896.601013, 951.900334, 921.407808
175
+ ]),
176
+ dict(type='TorchRandomCrop', crop_size=(224, 224)),
177
+ dict(type='Reshape', keys=['img'], new_shape=(6, 3, 224, 224)),
178
+ dict(
179
+ type='Reshape',
180
+ keys=['gt_semantic_seg'],
181
+ new_shape=(1, 224, 224)),
182
+ dict(
183
+ type='CastTensor',
184
+ keys=['gt_semantic_seg'],
185
+ new_type='torch.LongTensor'),
186
+ dict(type='Collect', keys=['img', 'gt_semantic_seg'])
187
+ ],
188
+ img_suffix='_merged.tif',
189
+ seg_map_suffix='.mask.tif',
190
+ split=
191
+ '/home/ubuntu/hls-foundation-os/fine-tuning-examples/data_splits/crop_classification/training_data.txt'
192
+ ),
193
+ val=dict(
194
+ type='GeospatialDataset',
195
+ CLASSES=(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13),
196
+ reduce_zero_label=True,
197
+ data_root='/home/ubuntu/hls_cdl_reclassed/',
198
+ img_dir='/home/ubuntu/hls_cdl_reclassed/validation_chips',
199
+ ann_dir='/home/ubuntu/hls_cdl_reclassed/validation_chips',
200
+ pipeline=[
201
+ dict(type='LoadGeospatialImageFromFile', to_float32=True),
202
+ dict(type='ToTensor', keys=['img']),
203
+ dict(
204
+ type='TorchNormalize',
205
+ means=[
206
+ 494.905781, 815.239594, 924.335066, 2968.881459,
207
+ 2634.621962, 1739.579917, 494.905781, 815.239594,
208
+ 924.335066, 2968.881459, 2634.621962, 1739.579917,
209
+ 494.905781, 815.239594, 924.335066, 2968.881459,
210
+ 2634.621962, 1739.579917
211
+ ],
212
+ stds=[
213
+ 284.925432, 357.84876, 575.566823, 896.601013, 951.900334,
214
+ 921.407808, 284.925432, 357.84876, 575.566823, 896.601013,
215
+ 951.900334, 921.407808, 284.925432, 357.84876, 575.566823,
216
+ 896.601013, 951.900334, 921.407808
217
+ ]),
218
+ dict(
219
+ type='Reshape',
220
+ keys=['img'],
221
+ new_shape=(6, 3, -1, -1),
222
+ look_up=dict({
223
+ '2': 1,
224
+ '3': 2
225
+ })),
226
+ dict(
227
+ type='CastTensor', keys=['img'], new_type='torch.FloatTensor'),
228
+ dict(
229
+ type='CollectTestList',
230
+ keys=['img'],
231
+ meta_keys=[
232
+ 'img_info', 'seg_fields', 'img_prefix', 'seg_prefix',
233
+ 'filename', 'ori_filename', 'img', 'img_shape',
234
+ 'ori_shape', 'pad_shape', 'scale_factor', 'img_norm_cfg'
235
+ ])
236
+ ],
237
+ img_suffix='_merged.tif',
238
+ seg_map_suffix='.mask.tif',
239
+ split=
240
+ '/home/ubuntu/hls-foundation-os/fine-tuning-examples/data_splits/crop_classification/validation_data.txt'
241
+ ),
242
+ test=dict(
243
+ type='GeospatialDataset',
244
+ CLASSES=(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13),
245
+ reduce_zero_label=True,
246
+ data_root='/home/ubuntu/hls_cdl_reclassed/',
247
+ img_dir='/home/ubuntu/hls_cdl_reclassed/validation_chips',
248
+ ann_dir='/home/ubuntu/hls_cdl_reclassed/validation_chips',
249
+ pipeline=[
250
+ dict(type='LoadGeospatialImageFromFile', to_float32=True),
251
+ dict(type='ToTensor', keys=['img']),
252
+ dict(
253
+ type='TorchNormalize',
254
+ means=[
255
+ 494.905781, 815.239594, 924.335066, 2968.881459,
256
+ 2634.621962, 1739.579917, 494.905781, 815.239594,
257
+ 924.335066, 2968.881459, 2634.621962, 1739.579917,
258
+ 494.905781, 815.239594, 924.335066, 2968.881459,
259
+ 2634.621962, 1739.579917
260
+ ],
261
+ stds=[
262
+ 284.925432, 357.84876, 575.566823, 896.601013, 951.900334,
263
+ 921.407808, 284.925432, 357.84876, 575.566823, 896.601013,
264
+ 951.900334, 921.407808, 284.925432, 357.84876, 575.566823,
265
+ 896.601013, 951.900334, 921.407808
266
+ ]),
267
+ dict(
268
+ type='Reshape',
269
+ keys=['img'],
270
+ new_shape=(6, 3, -1, -1),
271
+ look_up=dict({
272
+ '2': 1,
273
+ '3': 2
274
+ })),
275
+ dict(
276
+ type='CastTensor', keys=['img'], new_type='torch.FloatTensor'),
277
+ dict(
278
+ type='CollectTestList',
279
+ keys=['img'],
280
+ meta_keys=[
281
+ 'img_info', 'seg_fields', 'img_prefix', 'seg_prefix',
282
+ 'filename', 'ori_filename', 'img', 'img_shape',
283
+ 'ori_shape', 'pad_shape', 'scale_factor', 'img_norm_cfg'
284
+ ])
285
+ ],
286
+ img_suffix='_merged.tif',
287
+ seg_map_suffix='.mask.tif',
288
+ split=
289
+ '/home/ubuntu/hls-foundation-os/fine-tuning-examples/data_splits/crop_classification/validation_data.txt'
290
+ ))
291
+ optimizer = dict(
292
+ type='Adam', lr=1.5e-05, betas=(0.9, 0.999), weight_decay=0.05)
293
+ optimizer_config = dict(grad_clip=None)
294
+ lr_config = dict(
295
+ policy='poly',
296
+ warmup='linear',
297
+ warmup_iters=1500,
298
+ warmup_ratio=1e-06,
299
+ power=1.0,
300
+ min_lr=0.0,
301
+ by_epoch=False)
302
+ log_config = dict(
303
+ interval=10,
304
+ hooks=[dict(type='TextLoggerHook'),
305
+ dict(type='TensorboardLoggerHook')])
306
+ checkpoint_config = dict(
307
+ by_epoch=True,
308
+ interval=10,
309
+ out_dir='/home/ubuntu/clark_gfm_eval/multiclass_exp_newSplit')
310
+ evaluation = dict(interval=2, metric='mIoU', pre_eval=True, save_best='mIoU')
311
+ reduce_train_set = dict(reduce_train_set=False)
312
+ reduce_factor = dict(reduce_factor=1)
313
+ runner = dict(type='EpochBasedRunner', max_epochs=80)
314
+ workflow = [('train', 1), ('val', 1)]
315
+ norm_cfg = dict(type='BN', requires_grad=True)
316
+ loss_weights_multi = [
317
+ 0.386375, 0.661126, 0.548184, 0.640482, 0.876862, 0.925186, 3.249462,
318
+ 1.542289, 2.175141, 2.272419, 3.062762, 3.626097, 1.198702
319
+ ]
320
+ loss_func = dict(
321
+ type='CrossEntropyLoss',
322
+ use_sigmoid=False,
323
+ class_weight=[
324
+ 0.386375, 0.661126, 0.548184, 0.640482, 0.876862, 0.925186, 3.249462,
325
+ 1.542289, 2.175141, 2.272419, 3.062762, 3.626097, 1.198702
326
+ ],
327
+ avg_non_ignore=True)
328
+ output_embed_dim = 2304
329
+ model = dict(
330
+ type='TemporalEncoderDecoder',
331
+ frozen_backbone=False,
332
+ backbone=dict(
333
+ type='TemporalViTEncoder',
334
+ pretrained='/home/ubuntu/hls-loss-weights/Prithvi_100M.pt',
335
+ img_size=224,
336
+ patch_size=16,
337
+ num_frames=3,
338
+ tubelet_size=1,
339
+ in_chans=6,
340
+ embed_dim=768,
341
+ depth=6,
342
+ num_heads=8,
343
+ mlp_ratio=4.0,
344
+ norm_pix_loss=False),
345
+ neck=dict(
346
+ type='ConvTransformerTokensToEmbeddingNeck',
347
+ embed_dim=2304,
348
+ output_embed_dim=2304,
349
+ drop_cls_token=True,
350
+ Hp=14,
351
+ Wp=14),
352
+ decode_head=dict(
353
+ num_classes=13,
354
+ in_channels=2304,
355
+ type='FCNHead',
356
+ in_index=-1,
357
+ channels=256,
358
+ num_convs=1,
359
+ concat_input=False,
360
+ dropout_ratio=0.1,
361
+ norm_cfg=dict(type='BN', requires_grad=True),
362
+ align_corners=False,
363
+ loss_decode=dict(
364
+ type='CrossEntropyLoss',
365
+ use_sigmoid=False,
366
+ class_weight=[
367
+ 0.386375, 0.661126, 0.548184, 0.640482, 0.876862, 0.925186,
368
+ 3.249462, 1.542289, 2.175141, 2.272419, 3.062762, 3.626097,
369
+ 1.198702
370
+ ],
371
+ avg_non_ignore=True)),
372
+ auxiliary_head=dict(
373
+ num_classes=13,
374
+ in_channels=2304,
375
+ type='FCNHead',
376
+ in_index=-1,
377
+ channels=256,
378
+ num_convs=2,
379
+ concat_input=False,
380
+ dropout_ratio=0.1,
381
+ norm_cfg=dict(type='BN', requires_grad=True),
382
+ align_corners=False,
383
+ loss_decode=dict(
384
+ type='CrossEntropyLoss',
385
+ use_sigmoid=False,
386
+ class_weight=[
387
+ 0.386375, 0.661126, 0.548184, 0.640482, 0.876862, 0.925186,
388
+ 3.249462, 1.542289, 2.175141, 2.272419, 3.062762, 3.626097,
389
+ 1.198702
390
+ ],
391
+ avg_non_ignore=True)),
392
+ train_cfg=dict(),
393
+ test_cfg=dict(mode='slide', stride=(112, 112), crop_size=(224, 224)))
394
+ auto_resume = False
multi_temporal_crop_classification_best_mIoU_epoch_66.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec4bbbdca96bbd7a588c78b4a6c98dfa5969e4f870b705fa256047b7203a703d
3
+ size 1680477067
multi_temporal_crop_classification_latest.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:298953c90e6fd2c135303644e548c479c30eddccb81f350ce3b992b8df2aacb7
3
+ size 1680477067