File size: 7,601 Bytes
c551b8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Molformer model configuration"""

from collections import OrderedDict
from typing import Mapping

from transformers.configuration_utils import PretrainedConfig
from transformers.onnx import OnnxConfig
from transformers.utils import logging


logger = logging.get_logger(__name__)

MOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    "ibm/MoLFormer-XL-both-10pct": "https://huggingface.co/ibm/MoLFormer-XL-both-10pct/resolve/main/config.json",
}


class MolformerConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`MolformerModel`]. It is used to instantiate an
    Molformer model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the Molformer
    [ibm/MoLFormer-XL-both-10pct](https://huggingface.co/ibm/MoLFormer-XL-both-10pct) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 2362):
            Vocabulary size of the Molformer model. Defines the number of different tokens that can be represented by
            the `inputs_ids` passed when calling [`MolformerModel`] or [`TFMolformerModel`].
        hidden_size (`int`, *optional*, defaults to 768):
            Dimension of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 768):
            Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        embedding_dropout_prob (`float`, *optional*, defaults to 0.2):
            The dropout probability for the word embeddings.
        max_position_embeddings (`int`, *optional*, defaults to 202):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 1536).
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        linear_attention_eps (`float`, *optional*, defaults to 1e-06):
            The epsilon used by the linear attention layers normalization step.
        num_random_features (`int`, *optional*, defaults to 32):
            Random feature map dimension used in linear attention.
        feature_map_kernel (`str` or `function`, *optional*, defaults to `"relu"`):
            The non-linear activation function (function or string) in the generalized random features. If string,
            `"gelu"`, `"relu"`, `"selu"`, and `"gelu_new"` ar supported.
        deterministic_eval (`bool`, *optional*, defaults to `False`):
            Whether the random features should only be redrawn when training or not. If `True` and `model.training` is
            `False`, linear attention random feature weights will be constant, i.e., deterministic.
        classifier_dropout_prob (`float`, *optional*):
            The dropout probability for the classification head. If `None`, use `hidden_dropout_prob`.
        classifier_skip_connection (`bool`, *optional*, defaults to `True`):
            Whether a skip connection should be made between the layers of the classification head or not.
        pad_token_id (`int`, *optional*, defaults to 2):
            The id of the _padding_ token.

    Example:

    ```python
    >>> from transformers import MolformerModel, MolformerConfig

    >>> # Initializing a Molformer ibm/MoLFormer-XL-both-10pct style configuration
    >>> configuration = MolformerConfig()

    >>> # Initializing a model from the ibm/MoLFormer-XL-both-10pct style configuration
    >>> model = MolformerModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""
    model_type = "molformer"

    def __init__(
        self,
        vocab_size=2362,
        hidden_size=768,
        num_hidden_layers=12,
        num_attention_heads=12,
        intermediate_size=768,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        embedding_dropout_prob=0.2,
        max_position_embeddings=202,
        initializer_range=0.02,
        layer_norm_eps=1e-12,
        linear_attention_eps=1e-6,
        num_random_features=32,
        feature_map_kernel="relu",
        deterministic_eval=False,
        classifier_dropout_prob=None,
        classifier_skip_connection=True,
        pad_token_id=2,
        **kwargs,
    ):
        super().__init__(pad_token_id=pad_token_id, **kwargs)

        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.hidden_act = hidden_act
        self.intermediate_size = intermediate_size
        self.hidden_dropout_prob = hidden_dropout_prob
        self.embedding_dropout_prob = embedding_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.initializer_range = initializer_range
        self.layer_norm_eps = layer_norm_eps
        self.linear_attention_eps = linear_attention_eps
        self.num_random_features = num_random_features
        self.feature_map_kernel = feature_map_kernel
        self.deterministic_eval = deterministic_eval
        self.classifier_dropout_prob = classifier_dropout_prob
        self.classifier_skip_connection = classifier_skip_connection


# Copied from transformers.models.roberta.configuration_roberta.RobertaOnnxConfig with Roberta->Molformer
class MolformerOnnxConfig(OnnxConfig):
    @property
    def inputs(self) -> Mapping[str, Mapping[int, str]]:
        if self.task == "multiple-choice":
            dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
        else:
            dynamic_axis = {0: "batch", 1: "sequence"}
        return OrderedDict(
            [
                ("input_ids", dynamic_axis),
                ("attention_mask", dynamic_axis),
            ]
        )