vijaye12 commited on
Commit
3a51cb8
·
verified ·
1 Parent(s): 098125d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -16
README.md CHANGED
@@ -75,22 +75,6 @@ getting started [notebook](https://github.com/IBM/tsfm/blob/main/notebooks/hfdem
75
  but can provide any forecast lengths up to 720 in get_model() to get the required model.
76
 
77
 
78
- ## Model Capabilities with example scripts
79
-
80
- The below model scripts can be used for any of the above TTM models. Please update the HF model URL and branch name in the `from_pretrained` call appropriately to pick the model of your choice.
81
-
82
- **Since these models use frequency prefix tuning, ensure your dataset yaml (as mentioned in the below notebooks) have frequency information and set `enable_prefix_tuning` to True in load_dataset.**
83
- - Getting Started [[colab]](https://colab.research.google.com/github/ibm-granite/granite-tsfm/blob/main/notebooks/hfdemo/ttm_getting_started.ipynb)
84
- - Zeroshot Multivariate Forecasting [[Example]](https://github.com/ibm-granite/granite-tsfm/blob/main/notebooks/hfdemo/ttm_getting_started.ipynb)
85
- - Finetuned Multivariate Forecasting:
86
- - Channel-Independent Finetuning [[Example 1]](https://github.com/ibm-granite/granite-tsfm/blob/main/notebooks/hfdemo/ttm_getting_started.ipynb) [[Example 2]](https://github.com/ibm-granite/granite-tsfm/blob/main/notebooks/hfdemo/tinytimemixer/ttm_m4_hourly.ipynb)
87
- - Channel-Mix Finetuning [[Example]](https://github.com/ibm-granite/granite-tsfm/blob/main/notebooks/tutorial/ttm_channel_mix_finetuning.ipynb)
88
- - **New Releases (extended features released on October 2024)**
89
- - Finetuning and Forecasting with Exogenous/Control Variables [[Example]](https://github.com/ibm-granite/granite-tsfm/blob/main/notebooks/tutorial/ttm_with_exog_tutorial.ipynb)
90
- - Finetuning and Forecasting with static categorical features [Example: To be added soon]
91
- - Rolling Forecasts - Extend forecast lengths via rolling capability. Rolling beyond 2*forecast_length is not recommended. [[Example]](https://github.com/ibm-granite/granite-tsfm/blob/main/notebooks/hfdemo/ttm_rolling_prediction_getting_started.ipynb)
92
- - Helper scripts for optimal Learning Rate suggestions for Finetuning [[Example]](https://github.com/ibm-granite/granite-tsfm/blob/main/notebooks/tutorial/ttm_with_exog_tutorial.ipynb)
93
-
94
  ## Benchmarks
95
 
96
  <p align="center" width="100%">
 
75
  but can provide any forecast lengths up to 720 in get_model() to get the required model.
76
 
77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78
  ## Benchmarks
79
 
80
  <p align="center" width="100%">