Upload custom code for molformer models
Browse files- config.json +4 -0
- configuration_molformer.py +158 -0
- convert_molformer_original_checkpoint_to_pytorch.py +87 -0
- modeling_molformer.py +921 -0
- tokenization_molformer.py +226 -0
- tokenization_molformer_fast.py +153 -0
- tokenizer.json +2520 -0
- tokenizer_config.json +6 -0
config.json
CHANGED
@@ -2,6 +2,10 @@
|
|
2 |
"architectures": [
|
3 |
"MolformerForMaskedLM"
|
4 |
],
|
|
|
|
|
|
|
|
|
5 |
"classifier_dropout_prob": null,
|
6 |
"classifier_skip_connection": true,
|
7 |
"deterministic_eval": false,
|
|
|
2 |
"architectures": [
|
3 |
"MolformerForMaskedLM"
|
4 |
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configuration_molformer.MolformerConfig",
|
7 |
+
"AutoModelForMaskedLM": "modeling_molformer.MolformerForMaskedLM"
|
8 |
+
},
|
9 |
"classifier_dropout_prob": null,
|
10 |
"classifier_skip_connection": true,
|
11 |
"deterministic_eval": false,
|
configuration_molformer.py
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Molformer model configuration"""
|
16 |
+
|
17 |
+
from collections import OrderedDict
|
18 |
+
from typing import Mapping
|
19 |
+
|
20 |
+
from transformers.configuration_utils import PretrainedConfig
|
21 |
+
from transformers.onnx import OnnxConfig
|
22 |
+
from transformers.utils import logging
|
23 |
+
|
24 |
+
|
25 |
+
logger = logging.get_logger(__name__)
|
26 |
+
|
27 |
+
MOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
28 |
+
"ibm/MoLFormer-XL-both-10pct": "https://huggingface.co/ibm/MoLFormer-XL-both-10pct/resolve/main/config.json",
|
29 |
+
}
|
30 |
+
|
31 |
+
|
32 |
+
class MolformerConfig(PretrainedConfig):
|
33 |
+
r"""
|
34 |
+
This is the configuration class to store the configuration of a [`MolformerModel`]. It is used to instantiate an
|
35 |
+
Molformer model according to the specified arguments, defining the model architecture. Instantiating a
|
36 |
+
configuration with the defaults will yield a similar configuration to that of the Molformer
|
37 |
+
[ibm/MoLFormer-XL-both-10pct](https://huggingface.co/ibm/MoLFormer-XL-both-10pct) architecture.
|
38 |
+
|
39 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
40 |
+
documentation from [`PretrainedConfig`] for more information.
|
41 |
+
|
42 |
+
|
43 |
+
Args:
|
44 |
+
vocab_size (`int`, *optional*, defaults to 2362):
|
45 |
+
Vocabulary size of the Molformer model. Defines the number of different tokens that can be represented by
|
46 |
+
the `inputs_ids` passed when calling [`MolformerModel`] or [`TFMolformerModel`].
|
47 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
48 |
+
Dimension of the encoder layers and the pooler layer.
|
49 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
50 |
+
Number of hidden layers in the Transformer encoder.
|
51 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
52 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
53 |
+
intermediate_size (`int`, *optional*, defaults to 768):
|
54 |
+
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
55 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
56 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
57 |
+
`"relu"`, `"selu"` and `"gelu_new"` are supported.
|
58 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
59 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
60 |
+
embedding_dropout_prob (`float`, *optional*, defaults to 0.2):
|
61 |
+
The dropout probability for the word embeddings.
|
62 |
+
max_position_embeddings (`int`, *optional*, defaults to 202):
|
63 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
64 |
+
just in case (e.g., 512 or 1024 or 1536).
|
65 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
66 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
67 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
68 |
+
The epsilon used by the layer normalization layers.
|
69 |
+
linear_attention_eps (`float`, *optional*, defaults to 1e-06):
|
70 |
+
The epsilon used by the linear attention layers normalization step.
|
71 |
+
num_random_features (`int`, *optional*, defaults to 32):
|
72 |
+
Random feature map dimension used in linear attention.
|
73 |
+
feature_map_kernel (`str` or `function`, *optional*, defaults to `"relu"`):
|
74 |
+
The non-linear activation function (function or string) in the generalized random features. If string,
|
75 |
+
`"gelu"`, `"relu"`, `"selu"`, and `"gelu_new"` ar supported.
|
76 |
+
deterministic_eval (`bool`, *optional*, defaults to `False`):
|
77 |
+
Whether the random features should only be redrawn when training or not. If `True` and `model.training` is
|
78 |
+
`False`, linear attention random feature weights will be constant, i.e., deterministic.
|
79 |
+
classifier_dropout_prob (`float`, *optional*):
|
80 |
+
The dropout probability for the classification head. If `None`, use `hidden_dropout_prob`.
|
81 |
+
classifier_skip_connection (`bool`, *optional*, defaults to `True`):
|
82 |
+
Whether a skip connection should be made between the layers of the classification head or not.
|
83 |
+
pad_token_id (`int`, *optional*, defaults to 2):
|
84 |
+
The id of the _padding_ token.
|
85 |
+
|
86 |
+
Example:
|
87 |
+
|
88 |
+
```python
|
89 |
+
>>> from transformers import MolformerModel, MolformerConfig
|
90 |
+
|
91 |
+
>>> # Initializing a Molformer ibm/MoLFormer-XL-both-10pct style configuration
|
92 |
+
>>> configuration = MolformerConfig()
|
93 |
+
|
94 |
+
>>> # Initializing a model from the ibm/MoLFormer-XL-both-10pct style configuration
|
95 |
+
>>> model = MolformerModel(configuration)
|
96 |
+
|
97 |
+
>>> # Accessing the model configuration
|
98 |
+
>>> configuration = model.config
|
99 |
+
```"""
|
100 |
+
model_type = "molformer"
|
101 |
+
|
102 |
+
def __init__(
|
103 |
+
self,
|
104 |
+
vocab_size=2362,
|
105 |
+
hidden_size=768,
|
106 |
+
num_hidden_layers=12,
|
107 |
+
num_attention_heads=12,
|
108 |
+
intermediate_size=768,
|
109 |
+
hidden_act="gelu",
|
110 |
+
hidden_dropout_prob=0.1,
|
111 |
+
embedding_dropout_prob=0.2,
|
112 |
+
max_position_embeddings=202,
|
113 |
+
initializer_range=0.02,
|
114 |
+
layer_norm_eps=1e-12,
|
115 |
+
linear_attention_eps=1e-6,
|
116 |
+
num_random_features=32,
|
117 |
+
feature_map_kernel="relu",
|
118 |
+
deterministic_eval=False,
|
119 |
+
classifier_dropout_prob=None,
|
120 |
+
classifier_skip_connection=True,
|
121 |
+
pad_token_id=2,
|
122 |
+
**kwargs,
|
123 |
+
):
|
124 |
+
super().__init__(pad_token_id=pad_token_id, **kwargs)
|
125 |
+
|
126 |
+
self.vocab_size = vocab_size
|
127 |
+
self.hidden_size = hidden_size
|
128 |
+
self.num_hidden_layers = num_hidden_layers
|
129 |
+
self.num_attention_heads = num_attention_heads
|
130 |
+
self.hidden_act = hidden_act
|
131 |
+
self.intermediate_size = intermediate_size
|
132 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
133 |
+
self.embedding_dropout_prob = embedding_dropout_prob
|
134 |
+
self.max_position_embeddings = max_position_embeddings
|
135 |
+
self.initializer_range = initializer_range
|
136 |
+
self.layer_norm_eps = layer_norm_eps
|
137 |
+
self.linear_attention_eps = linear_attention_eps
|
138 |
+
self.num_random_features = num_random_features
|
139 |
+
self.feature_map_kernel = feature_map_kernel
|
140 |
+
self.deterministic_eval = deterministic_eval
|
141 |
+
self.classifier_dropout_prob = classifier_dropout_prob
|
142 |
+
self.classifier_skip_connection = classifier_skip_connection
|
143 |
+
|
144 |
+
|
145 |
+
# Copied from transformers.models.roberta.configuration_roberta.RobertaOnnxConfig with Roberta->Molformer
|
146 |
+
class MolformerOnnxConfig(OnnxConfig):
|
147 |
+
@property
|
148 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
149 |
+
if self.task == "multiple-choice":
|
150 |
+
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
|
151 |
+
else:
|
152 |
+
dynamic_axis = {0: "batch", 1: "sequence"}
|
153 |
+
return OrderedDict(
|
154 |
+
[
|
155 |
+
("input_ids", dynamic_axis),
|
156 |
+
("attention_mask", dynamic_axis),
|
157 |
+
]
|
158 |
+
)
|
convert_molformer_original_checkpoint_to_pytorch.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert Molformer checkpoint."""
|
16 |
+
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import re
|
20 |
+
|
21 |
+
import torch
|
22 |
+
|
23 |
+
from transformers import MolformerConfig, MolformerForMaskedLM
|
24 |
+
from transformers.utils import logging
|
25 |
+
|
26 |
+
|
27 |
+
logging.set_verbosity_info()
|
28 |
+
|
29 |
+
RULES = [
|
30 |
+
(r"tok_emb", r"molformer.embeddings.word_embeddings"),
|
31 |
+
(
|
32 |
+
r"blocks\.layers\.(\d+)\.attention\.inner_attention\.feature_map\.omega",
|
33 |
+
r"molformer.encoder.layer.\1.attention.self.feature_map.weight",
|
34 |
+
),
|
35 |
+
(
|
36 |
+
r"blocks\.layers\.(\d+)\.attention\.(query|key|value)_projection",
|
37 |
+
r"molformer.encoder.layer.\1.attention.self.\2",
|
38 |
+
),
|
39 |
+
(r"blocks\.layers\.(\d+)\.attention\.out_projection", r"molformer.encoder.layer.\1.attention.output.dense"),
|
40 |
+
(r"blocks\.layers\.(\d+)\.norm1", r"molformer.encoder.layer.\1.attention.output.LayerNorm"),
|
41 |
+
(r"blocks\.layers\.(\d+)\.linear1", r"molformer.encoder.layer.\1.intermediate.dense"),
|
42 |
+
(r"blocks\.layers\.(\d+)\.linear2", r"molformer.encoder.layer.\1.output.dense"),
|
43 |
+
(r"blocks\.layers\.(\d+)\.norm2", r"molformer.encoder.layer.\1.output.LayerNorm"),
|
44 |
+
(r"blocks\.norm", r"molformer.LayerNorm"),
|
45 |
+
(r"lang_model\.embed", r"lm_head.transform.dense"),
|
46 |
+
(r"lang_model\.ln_f", r"lm_head.transform.LayerNorm"),
|
47 |
+
(r"lang_model\.head", r"lm_head.decoder"),
|
48 |
+
]
|
49 |
+
for i, (find, replace) in enumerate(RULES):
|
50 |
+
RULES[i] = (re.compile(find), replace)
|
51 |
+
|
52 |
+
|
53 |
+
def convert_lightning_checkpoint_to_pytorch(lightning_checkpoint_path, pytorch_dump_path, config=None):
|
54 |
+
# Initialise PyTorch model
|
55 |
+
config = MolformerConfig(tie_word_embeddings=False) if config is None else MolformerConfig.from_pretrained(config)
|
56 |
+
print(f"Building PyTorch model from configuration: {config}")
|
57 |
+
model = MolformerForMaskedLM(config)
|
58 |
+
|
59 |
+
# Load weights from lightning checkpoint
|
60 |
+
checkpoint = torch.load(lightning_checkpoint_path, map_location="cpu")
|
61 |
+
|
62 |
+
state_dict = checkpoint["state_dict"]
|
63 |
+
new_state_dict = {}
|
64 |
+
for key, val in state_dict.items():
|
65 |
+
for find, replace in RULES:
|
66 |
+
if find.search(key) is not None:
|
67 |
+
new_state_dict[find.sub(replace, key)] = val
|
68 |
+
break
|
69 |
+
model.load_state_dict(new_state_dict)
|
70 |
+
|
71 |
+
# Save pytorch-model
|
72 |
+
print(f"Save PyTorch model to {pytorch_dump_path}")
|
73 |
+
torch.save(model.state_dict(), pytorch_dump_path)
|
74 |
+
|
75 |
+
|
76 |
+
if __name__ == "__main__":
|
77 |
+
parser = argparse.ArgumentParser()
|
78 |
+
# Required parameters
|
79 |
+
parser.add_argument(
|
80 |
+
"--lightning_checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint path."
|
81 |
+
)
|
82 |
+
parser.add_argument(
|
83 |
+
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
|
84 |
+
)
|
85 |
+
parser.add_argument("--config", default=None, type=str, help="Path to config.json")
|
86 |
+
args = parser.parse_args()
|
87 |
+
convert_lightning_checkpoint_to_pytorch(args.lightning_checkpoint_path, args.pytorch_dump_path, config=args.config)
|
modeling_molformer.py
ADDED
@@ -0,0 +1,921 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch Molformer model."""
|
16 |
+
|
17 |
+
|
18 |
+
import math
|
19 |
+
from typing import Optional, Tuple, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.utils.checkpoint
|
23 |
+
from torch import nn
|
24 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
25 |
+
|
26 |
+
from transformers.activations import ACT2FN
|
27 |
+
from transformers.modeling_outputs import (
|
28 |
+
BaseModelOutput,
|
29 |
+
BaseModelOutputWithPooling,
|
30 |
+
MaskedLMOutput,
|
31 |
+
SequenceClassifierOutput,
|
32 |
+
)
|
33 |
+
from transformers.modeling_utils import PreTrainedModel
|
34 |
+
from transformers.pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
|
35 |
+
from transformers.utils import (
|
36 |
+
add_code_sample_docstrings,
|
37 |
+
add_start_docstrings,
|
38 |
+
add_start_docstrings_to_model_forward,
|
39 |
+
logging,
|
40 |
+
)
|
41 |
+
from .configuration_molformer import MolformerConfig
|
42 |
+
|
43 |
+
|
44 |
+
logger = logging.get_logger(__name__)
|
45 |
+
|
46 |
+
_CHECKPOINT_FOR_DOC = "ibm/MoLFormer-XL-both-10pct"
|
47 |
+
_CONFIG_FOR_DOC = "MolformerConfig"
|
48 |
+
|
49 |
+
MOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
50 |
+
"ibm/MoLFormer-XL-both-10pct",
|
51 |
+
# See all MoLFormer models at https://huggingface.co/models?filter=molformer
|
52 |
+
]
|
53 |
+
|
54 |
+
|
55 |
+
# Copied from transformers.models.esm.modeling_esm.rotate_half
|
56 |
+
def rotate_half(x):
|
57 |
+
x1, x2 = x.chunk(2, dim=-1)
|
58 |
+
return torch.cat((-x2, x1), dim=-1)
|
59 |
+
|
60 |
+
|
61 |
+
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
|
62 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
63 |
+
cos = cos[position_ids].unsqueeze(1) # [seq_len, dim] -> [batch_size, 1, seq_len, head_dim]
|
64 |
+
sin = sin[position_ids].unsqueeze(1)
|
65 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
66 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
67 |
+
return q_embed, k_embed
|
68 |
+
|
69 |
+
|
70 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Molformer
|
71 |
+
class MolformerRotaryEmbedding(nn.Module):
|
72 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
73 |
+
super().__init__()
|
74 |
+
|
75 |
+
self.dim = dim
|
76 |
+
self.max_position_embeddings = max_position_embeddings
|
77 |
+
self.base = base
|
78 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
79 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
80 |
+
|
81 |
+
# Build here to make `torch.jit.trace` work.
|
82 |
+
self._set_cos_sin_cache(
|
83 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
84 |
+
)
|
85 |
+
|
86 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
87 |
+
self.max_seq_len_cached = seq_len
|
88 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
89 |
+
|
90 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
91 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
92 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
93 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
94 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
95 |
+
|
96 |
+
def forward(self, x, seq_len=None):
|
97 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
98 |
+
if seq_len > self.max_seq_len_cached:
|
99 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
100 |
+
|
101 |
+
return (
|
102 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
103 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
104 |
+
)
|
105 |
+
|
106 |
+
|
107 |
+
class MolformerEmbeddings(nn.Module):
|
108 |
+
"""Construct the embeddings from word embeddings."""
|
109 |
+
|
110 |
+
def __init__(self, config):
|
111 |
+
super().__init__()
|
112 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
113 |
+
self.dropout = nn.Dropout(config.embedding_dropout_prob)
|
114 |
+
|
115 |
+
def forward(
|
116 |
+
self, input_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None
|
117 |
+
) -> torch.Tensor:
|
118 |
+
if inputs_embeds is None:
|
119 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
120 |
+
|
121 |
+
embeddings = inputs_embeds
|
122 |
+
embeddings = self.dropout(embeddings)
|
123 |
+
return embeddings
|
124 |
+
|
125 |
+
|
126 |
+
class MolformerFeatureMap(nn.Module):
|
127 |
+
def __init__(self, config):
|
128 |
+
super().__init__()
|
129 |
+
self.query_size = config.hidden_size // config.num_attention_heads
|
130 |
+
self.num_components = config.num_random_features
|
131 |
+
self.orthogonal_random_weights()
|
132 |
+
if isinstance(config.feature_map_kernel, str):
|
133 |
+
self.kernel = ACT2FN[config.feature_map_kernel]
|
134 |
+
else:
|
135 |
+
self.kernel = config.feature_map_kernel
|
136 |
+
self.deterministic = config.deterministic_eval
|
137 |
+
|
138 |
+
def orthogonal_random_weights(self, device=None):
|
139 |
+
# make sure query size evenly divides feature size (round up)
|
140 |
+
num_batches = math.ceil(self.num_components / self.query_size)
|
141 |
+
|
142 |
+
def orthogonal_batch(size):
|
143 |
+
block = torch.randn(size, size, device=device)
|
144 |
+
norms = torch.linalg.norm(block, dim=1).unsqueeze(0)
|
145 |
+
Q, _ = torch.linalg.qr(block)
|
146 |
+
return Q * norms
|
147 |
+
|
148 |
+
random_weights = torch.cat([orthogonal_batch(self.query_size) for _ in range(num_batches)], dim=1)
|
149 |
+
random_weights = random_weights[:, : self.num_components]
|
150 |
+
self.register_buffer("weight", random_weights)
|
151 |
+
|
152 |
+
def forward(self, query, key):
|
153 |
+
if not self.deterministic or self.training:
|
154 |
+
self.orthogonal_random_weights(query.device)
|
155 |
+
# generalized random fourier features
|
156 |
+
query = torch.matmul(query, self.weight)
|
157 |
+
key = torch.matmul(key, self.weight)
|
158 |
+
return self.kernel(query), self.kernel(key)
|
159 |
+
|
160 |
+
|
161 |
+
class MolformerSelfAttention(nn.Module):
|
162 |
+
def __init__(self, config):
|
163 |
+
super().__init__()
|
164 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
165 |
+
raise ValueError(
|
166 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
167 |
+
f"heads ({config.num_attention_heads})"
|
168 |
+
)
|
169 |
+
|
170 |
+
self.num_attention_heads = config.num_attention_heads
|
171 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
172 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
173 |
+
|
174 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
175 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
176 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
177 |
+
|
178 |
+
self.eps = config.linear_attention_eps
|
179 |
+
|
180 |
+
self.rotary_embeddings = MolformerRotaryEmbedding(
|
181 |
+
dim=self.attention_head_size, max_position_embeddings=config.max_position_embeddings
|
182 |
+
)
|
183 |
+
self.feature_map = MolformerFeatureMap(config)
|
184 |
+
|
185 |
+
# Copied from transformers.models.bert.modeling_bert.BertSelfAttention.transpose_for_scores
|
186 |
+
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
187 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
188 |
+
x = x.view(new_x_shape)
|
189 |
+
return x.permute(0, 2, 1, 3)
|
190 |
+
|
191 |
+
def forward(
|
192 |
+
self,
|
193 |
+
hidden_states: torch.Tensor,
|
194 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
195 |
+
position_ids: Optional[torch.LongTensor] = None,
|
196 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
197 |
+
output_attentions: Optional[bool] = False,
|
198 |
+
) -> Tuple[torch.Tensor]:
|
199 |
+
query_layer = self.transpose_for_scores(self.query(hidden_states))
|
200 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
201 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
202 |
+
|
203 |
+
kv_seq_len = key_layer.shape[-2]
|
204 |
+
cos, sin = self.rotary_embeddings(value_layer, seq_len=kv_seq_len)
|
205 |
+
query_layer, key_layer = apply_rotary_pos_emb(query_layer, key_layer, cos, sin, position_ids)
|
206 |
+
# Apply the feature map to the queries and keys
|
207 |
+
query_layer, key_layer = self.feature_map(query_layer, key_layer)
|
208 |
+
|
209 |
+
if attention_mask is not None:
|
210 |
+
# since we don't use softmax, we need to reconvert this mask to 1/0
|
211 |
+
attention_mask = (attention_mask == 0).to(attention_mask.dtype)
|
212 |
+
# separate original mask from causal mask
|
213 |
+
per_query_attn = attention_mask[:, 0, -1]
|
214 |
+
per_query_extended = per_query_attn[:, None, None, :]
|
215 |
+
if not torch.equal(attention_mask, per_query_extended):
|
216 |
+
raise ValueError(
|
217 |
+
"MolformerSelfAttention does not support arbitrary 3D attention. attention_mask must be 2D (i.e., [batch size, sequence length])"
|
218 |
+
)
|
219 |
+
|
220 |
+
key_layer = key_layer * per_query_attn[:, None, -kv_seq_len:, None]
|
221 |
+
|
222 |
+
# linear attention
|
223 |
+
key_value = torch.matmul(key_layer.transpose(-1, -2), value_layer)
|
224 |
+
norm = torch.matmul(query_layer, key_layer.sum(dim=-2).unsqueeze(-1)).clamp(min=self.eps)
|
225 |
+
context_layer = torch.matmul(query_layer, key_value) / norm
|
226 |
+
|
227 |
+
if head_mask is not None:
|
228 |
+
context_layer = context_layer * head_mask
|
229 |
+
|
230 |
+
if output_attentions:
|
231 |
+
logger.warning(
|
232 |
+
"Outputting attentions in linear attention negates the efficiency gains! Only use for visualization/debugging."
|
233 |
+
)
|
234 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
235 |
+
if attention_mask is not None:
|
236 |
+
attention_scores = attention_scores * attention_mask
|
237 |
+
attention_probs = nn.functional.normalize(attention_scores, p=1, dim=-1, eps=self.eps)
|
238 |
+
if head_mask is not None:
|
239 |
+
attention_probs = attention_probs * head_mask
|
240 |
+
# recompute context_layer for grad
|
241 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
242 |
+
|
243 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
244 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
245 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
246 |
+
|
247 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
248 |
+
|
249 |
+
return outputs
|
250 |
+
|
251 |
+
|
252 |
+
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput
|
253 |
+
class MolformerSelfOutput(nn.Module):
|
254 |
+
def __init__(self, config):
|
255 |
+
super().__init__()
|
256 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
257 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
258 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
259 |
+
|
260 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
261 |
+
hidden_states = self.dense(hidden_states)
|
262 |
+
hidden_states = self.dropout(hidden_states)
|
263 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
264 |
+
return hidden_states
|
265 |
+
|
266 |
+
|
267 |
+
class MolformerAttention(nn.Module):
|
268 |
+
def __init__(self, config):
|
269 |
+
super().__init__()
|
270 |
+
self.self = MolformerSelfAttention(config)
|
271 |
+
self.output = MolformerSelfOutput(config)
|
272 |
+
self.pruned_heads = set()
|
273 |
+
|
274 |
+
# Copied from transformers.models.bert.modeling_bert.BertAttention.prune_heads
|
275 |
+
def prune_heads(self, heads):
|
276 |
+
if len(heads) == 0:
|
277 |
+
return
|
278 |
+
heads, index = find_pruneable_heads_and_indices(
|
279 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
280 |
+
)
|
281 |
+
|
282 |
+
# Prune linear layers
|
283 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
284 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
285 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
286 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
287 |
+
|
288 |
+
# Update hyper params and store pruned heads
|
289 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
290 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
291 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
292 |
+
|
293 |
+
def forward(
|
294 |
+
self,
|
295 |
+
hidden_states: torch.Tensor,
|
296 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
297 |
+
position_ids: Optional[torch.LongTensor] = None,
|
298 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
299 |
+
output_attentions: Optional[bool] = False,
|
300 |
+
) -> Tuple[torch.Tensor]:
|
301 |
+
self_outputs = self.self(
|
302 |
+
hidden_states,
|
303 |
+
attention_mask,
|
304 |
+
position_ids,
|
305 |
+
head_mask,
|
306 |
+
output_attentions,
|
307 |
+
)
|
308 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
309 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
310 |
+
return outputs
|
311 |
+
|
312 |
+
|
313 |
+
# Copied from transformers.models.bert.modeling_bert.BertIntermediate
|
314 |
+
class MolformerIntermediate(nn.Module):
|
315 |
+
def __init__(self, config):
|
316 |
+
super().__init__()
|
317 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
318 |
+
if isinstance(config.hidden_act, str):
|
319 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
320 |
+
else:
|
321 |
+
self.intermediate_act_fn = config.hidden_act
|
322 |
+
|
323 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
324 |
+
hidden_states = self.dense(hidden_states)
|
325 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
326 |
+
return hidden_states
|
327 |
+
|
328 |
+
|
329 |
+
# Copied from transformers.models.bert.modeling_bert.BertOutput
|
330 |
+
class MolformerOutput(nn.Module):
|
331 |
+
def __init__(self, config):
|
332 |
+
super().__init__()
|
333 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
334 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
335 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
336 |
+
|
337 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
338 |
+
hidden_states = self.dense(hidden_states)
|
339 |
+
hidden_states = self.dropout(hidden_states)
|
340 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
341 |
+
return hidden_states
|
342 |
+
|
343 |
+
|
344 |
+
class MolformerLayer(nn.Module):
|
345 |
+
def __init__(self, config):
|
346 |
+
super().__init__()
|
347 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
348 |
+
self.seq_len_dim = 1
|
349 |
+
self.attention = MolformerAttention(config)
|
350 |
+
self.intermediate = MolformerIntermediate(config)
|
351 |
+
self.output = MolformerOutput(config)
|
352 |
+
|
353 |
+
def forward(
|
354 |
+
self,
|
355 |
+
hidden_states: torch.Tensor,
|
356 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
357 |
+
position_ids: Optional[torch.LongTensor] = None,
|
358 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
359 |
+
output_attentions: Optional[bool] = False,
|
360 |
+
) -> Tuple[torch.Tensor]:
|
361 |
+
self_attention_outputs = self.attention(
|
362 |
+
hidden_states,
|
363 |
+
attention_mask,
|
364 |
+
position_ids,
|
365 |
+
head_mask,
|
366 |
+
output_attentions=output_attentions,
|
367 |
+
)
|
368 |
+
attention_output = self_attention_outputs[0]
|
369 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
370 |
+
|
371 |
+
layer_output = apply_chunking_to_forward(
|
372 |
+
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
373 |
+
)
|
374 |
+
outputs = (layer_output,) + outputs
|
375 |
+
|
376 |
+
return outputs
|
377 |
+
|
378 |
+
def feed_forward_chunk(self, attention_output):
|
379 |
+
intermediate_output = self.intermediate(attention_output)
|
380 |
+
layer_output = self.output(intermediate_output, attention_output)
|
381 |
+
return layer_output
|
382 |
+
|
383 |
+
|
384 |
+
class MolformerEncoder(nn.Module):
|
385 |
+
def __init__(self, config):
|
386 |
+
super().__init__()
|
387 |
+
self.config = config
|
388 |
+
self.layer = nn.ModuleList([MolformerLayer(config) for _ in range(config.num_hidden_layers)])
|
389 |
+
self.gradient_checkpointing = False
|
390 |
+
|
391 |
+
def forward(
|
392 |
+
self,
|
393 |
+
hidden_states: torch.Tensor,
|
394 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
395 |
+
position_ids: Optional[torch.LongTensor] = None,
|
396 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
397 |
+
output_attentions: Optional[bool] = False,
|
398 |
+
output_hidden_states: Optional[bool] = False,
|
399 |
+
return_dict: Optional[bool] = True,
|
400 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutput]:
|
401 |
+
all_hidden_states = () if output_hidden_states else None
|
402 |
+
all_self_attentions = () if output_attentions else None
|
403 |
+
|
404 |
+
for i, layer_module in enumerate(self.layer):
|
405 |
+
if output_hidden_states:
|
406 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
407 |
+
|
408 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
409 |
+
|
410 |
+
if self.gradient_checkpointing and self.training:
|
411 |
+
|
412 |
+
def create_custom_forward(module):
|
413 |
+
def custom_forward(*inputs):
|
414 |
+
return module(*inputs, output_attentions)
|
415 |
+
|
416 |
+
return custom_forward
|
417 |
+
|
418 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
419 |
+
create_custom_forward(layer_module),
|
420 |
+
hidden_states,
|
421 |
+
attention_mask,
|
422 |
+
position_ids,
|
423 |
+
layer_head_mask,
|
424 |
+
)
|
425 |
+
else:
|
426 |
+
layer_outputs = layer_module(
|
427 |
+
hidden_states,
|
428 |
+
attention_mask,
|
429 |
+
position_ids,
|
430 |
+
layer_head_mask,
|
431 |
+
output_attentions,
|
432 |
+
)
|
433 |
+
|
434 |
+
hidden_states = layer_outputs[0]
|
435 |
+
if output_attentions:
|
436 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
437 |
+
|
438 |
+
if output_hidden_states:
|
439 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
440 |
+
|
441 |
+
if not return_dict:
|
442 |
+
return tuple(
|
443 |
+
v
|
444 |
+
for v in [
|
445 |
+
hidden_states,
|
446 |
+
all_hidden_states,
|
447 |
+
all_self_attentions,
|
448 |
+
]
|
449 |
+
if v is not None
|
450 |
+
)
|
451 |
+
return BaseModelOutput(
|
452 |
+
last_hidden_state=hidden_states,
|
453 |
+
hidden_states=all_hidden_states,
|
454 |
+
attentions=all_self_attentions,
|
455 |
+
)
|
456 |
+
|
457 |
+
|
458 |
+
# Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform
|
459 |
+
class MolformerPredictionHeadTransform(nn.Module):
|
460 |
+
def __init__(self, config):
|
461 |
+
super().__init__()
|
462 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
463 |
+
if isinstance(config.hidden_act, str):
|
464 |
+
self.transform_act_fn = ACT2FN[config.hidden_act]
|
465 |
+
else:
|
466 |
+
self.transform_act_fn = config.hidden_act
|
467 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
468 |
+
|
469 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
470 |
+
hidden_states = self.dense(hidden_states)
|
471 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
472 |
+
hidden_states = self.LayerNorm(hidden_states)
|
473 |
+
return hidden_states
|
474 |
+
|
475 |
+
|
476 |
+
class MolformerLMPredictionHead(nn.Module):
|
477 |
+
def __init__(self, config):
|
478 |
+
super().__init__()
|
479 |
+
self.transform = MolformerPredictionHeadTransform(config)
|
480 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
481 |
+
|
482 |
+
def forward(self, hidden_states):
|
483 |
+
hidden_states = self.transform(hidden_states)
|
484 |
+
hidden_states = self.decoder(hidden_states)
|
485 |
+
return hidden_states
|
486 |
+
|
487 |
+
|
488 |
+
# Copied from transformers.models.roberta.modeling_roberta.RobertaPreTrainedModel with Roberta->Molformer,roberta->molformer
|
489 |
+
class MolformerPreTrainedModel(PreTrainedModel):
|
490 |
+
"""
|
491 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
492 |
+
models.
|
493 |
+
"""
|
494 |
+
|
495 |
+
config_class = MolformerConfig
|
496 |
+
base_model_prefix = "molformer"
|
497 |
+
supports_gradient_checkpointing = True
|
498 |
+
_no_split_modules = ["MolformerEmbeddings", "MolformerSelfAttention"]
|
499 |
+
|
500 |
+
# Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
|
501 |
+
def _init_weights(self, module):
|
502 |
+
"""Initialize the weights"""
|
503 |
+
if isinstance(module, nn.Linear):
|
504 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
505 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
506 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
507 |
+
if module.bias is not None:
|
508 |
+
module.bias.data.zero_()
|
509 |
+
elif isinstance(module, nn.Embedding):
|
510 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
511 |
+
if module.padding_idx is not None:
|
512 |
+
module.weight.data[module.padding_idx].zero_()
|
513 |
+
elif isinstance(module, nn.LayerNorm):
|
514 |
+
module.bias.data.zero_()
|
515 |
+
module.weight.data.fill_(1.0)
|
516 |
+
|
517 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
518 |
+
if isinstance(module, MolformerEncoder):
|
519 |
+
module.gradient_checkpointing = value
|
520 |
+
|
521 |
+
|
522 |
+
def masked_avg_pool1d(hidden_states, attention_mask, eps=1e-9):
|
523 |
+
attention_mask = attention_mask.unsqueeze(-1).expand_as(hidden_states).float()
|
524 |
+
sum_embeddings = torch.sum(hidden_states * attention_mask, dim=1)
|
525 |
+
sum_mask = torch.clamp(attention_mask.sum(dim=1), min=eps)
|
526 |
+
embedding = sum_embeddings / sum_mask
|
527 |
+
return embedding
|
528 |
+
|
529 |
+
|
530 |
+
MOLFORMER_START_DOCSTRING = r"""
|
531 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
|
532 |
+
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
533 |
+
behavior.
|
534 |
+
|
535 |
+
Parameters:
|
536 |
+
config ([`MolformerConfig`]): Model configuration class with all the parameters of the model.
|
537 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
538 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
539 |
+
"""
|
540 |
+
|
541 |
+
MOLFORMER_INPUTS_DOCSTRING = r"""
|
542 |
+
Args:
|
543 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
544 |
+
Indices of input sequence tokens in the vocabulary.
|
545 |
+
|
546 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
547 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
548 |
+
|
549 |
+
[What are input IDs?](../glossary#input-ids)
|
550 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
551 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
552 |
+
|
553 |
+
- 1 for tokens that are **not masked**,
|
554 |
+
- 0 for tokens that are **masked**.
|
555 |
+
|
556 |
+
[What are attention masks?](../glossary#attention-mask)
|
557 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
558 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
559 |
+
config.n_positions - 1]`.
|
560 |
+
|
561 |
+
[What are position IDs?](../glossary#position-ids)
|
562 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
563 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
564 |
+
|
565 |
+
- 1 indicates the head is **not masked**,
|
566 |
+
- 0 indicates the head is **masked**.
|
567 |
+
|
568 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
569 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
570 |
+
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
|
571 |
+
model's internal embedding lookup matrix.
|
572 |
+
output_attentions (`bool`, *optional*):
|
573 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
574 |
+
tensors for more detail.
|
575 |
+
output_hidden_states (`bool`, *optional*):
|
576 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
577 |
+
more detail.
|
578 |
+
return_dict (`bool`, *optional*):
|
579 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
580 |
+
"""
|
581 |
+
|
582 |
+
|
583 |
+
@add_start_docstrings(
|
584 |
+
"The bare Molformer Model transformer outputting raw hidden-states without any specific head on top.",
|
585 |
+
MOLFORMER_START_DOCSTRING,
|
586 |
+
"""
|
587 |
+
add_pooling_layer (`bool`, *optional*, defaults to `True`):
|
588 |
+
Whether or not to apply pooling layer.
|
589 |
+
""",
|
590 |
+
)
|
591 |
+
class MolformerModel(MolformerPreTrainedModel):
|
592 |
+
"""
|
593 |
+
|
594 |
+
The model can behave as an encoder (with only self-attention).
|
595 |
+
"""
|
596 |
+
|
597 |
+
def __init__(self, config, add_pooling_layer=True):
|
598 |
+
super().__init__(config)
|
599 |
+
self.config = config
|
600 |
+
|
601 |
+
self.embeddings = MolformerEmbeddings(config)
|
602 |
+
self.encoder = MolformerEncoder(config)
|
603 |
+
|
604 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
605 |
+
self.pooler = masked_avg_pool1d if add_pooling_layer else None
|
606 |
+
|
607 |
+
# Initialize weights and apply final processing
|
608 |
+
self.post_init()
|
609 |
+
|
610 |
+
def get_input_embeddings(self):
|
611 |
+
return self.embeddings.word_embeddings
|
612 |
+
|
613 |
+
def set_input_embeddings(self, value):
|
614 |
+
self.embeddings.word_embeddings = value
|
615 |
+
|
616 |
+
def _prune_heads(self, heads_to_prune):
|
617 |
+
"""
|
618 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
619 |
+
class PreTrainedModel
|
620 |
+
"""
|
621 |
+
for layer, heads in heads_to_prune.items():
|
622 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
623 |
+
|
624 |
+
@add_start_docstrings_to_model_forward(MOLFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
625 |
+
@add_code_sample_docstrings(
|
626 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
627 |
+
output_type=BaseModelOutputWithPooling,
|
628 |
+
config_class=_CONFIG_FOR_DOC,
|
629 |
+
)
|
630 |
+
def forward(
|
631 |
+
self,
|
632 |
+
input_ids: Optional[torch.LongTensor] = None,
|
633 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
634 |
+
position_ids: Optional[torch.LongTensor] = None,
|
635 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
636 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
637 |
+
output_attentions: Optional[bool] = None,
|
638 |
+
output_hidden_states: Optional[bool] = None,
|
639 |
+
return_dict: Optional[bool] = None,
|
640 |
+
) -> Union[BaseModelOutputWithPooling, Tuple[torch.Tensor]]:
|
641 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
642 |
+
output_hidden_states = (
|
643 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
644 |
+
)
|
645 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
646 |
+
|
647 |
+
if input_ids is not None and inputs_embeds is not None:
|
648 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
649 |
+
elif input_ids is not None:
|
650 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
651 |
+
input_shape = input_ids.size()
|
652 |
+
elif inputs_embeds is not None:
|
653 |
+
input_shape = inputs_embeds.size()[:-1]
|
654 |
+
else:
|
655 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
656 |
+
|
657 |
+
batch_size, seq_length = input_shape
|
658 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
659 |
+
|
660 |
+
if position_ids is None:
|
661 |
+
position_ids = torch.arange(seq_length, dtype=torch.long, device=device)
|
662 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
663 |
+
else:
|
664 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
665 |
+
|
666 |
+
if attention_mask is None:
|
667 |
+
attention_mask = torch.ones((batch_size, seq_length), device=device)
|
668 |
+
|
669 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
670 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
671 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
|
672 |
+
|
673 |
+
# Prepare head mask if needed
|
674 |
+
# 1.0 in head_mask indicate we keep the head
|
675 |
+
# attention_probs has shape bsz x n_heads x N x N
|
676 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
677 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
678 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
679 |
+
|
680 |
+
embedding_output = self.embeddings(input_ids=input_ids, inputs_embeds=inputs_embeds)
|
681 |
+
|
682 |
+
encoder_outputs = self.encoder(
|
683 |
+
embedding_output,
|
684 |
+
attention_mask=extended_attention_mask,
|
685 |
+
position_ids=position_ids,
|
686 |
+
head_mask=head_mask,
|
687 |
+
output_attentions=output_attentions,
|
688 |
+
output_hidden_states=output_hidden_states,
|
689 |
+
return_dict=return_dict,
|
690 |
+
)
|
691 |
+
sequence_output = encoder_outputs[0]
|
692 |
+
sequence_output = self.LayerNorm(sequence_output)
|
693 |
+
pooled_output = self.pooler(sequence_output, attention_mask) if self.pooler is not None else None
|
694 |
+
|
695 |
+
if not return_dict:
|
696 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
697 |
+
|
698 |
+
return BaseModelOutputWithPooling(
|
699 |
+
last_hidden_state=sequence_output,
|
700 |
+
pooler_output=pooled_output,
|
701 |
+
hidden_states=encoder_outputs.hidden_states,
|
702 |
+
attentions=encoder_outputs.attentions,
|
703 |
+
)
|
704 |
+
|
705 |
+
|
706 |
+
@add_start_docstrings("""Molformer Model with a `language modeling` head on top.""", MOLFORMER_START_DOCSTRING)
|
707 |
+
class MolformerForMaskedLM(MolformerPreTrainedModel):
|
708 |
+
_tied_weights_keys = ["lm_head.decoder.weight"]
|
709 |
+
|
710 |
+
# Copied from transformers.models.roberta.modeling_roberta.RobertaForMaskedLM.__init__ with Roberta->Molformer,roberta->molformer,LMHead->LMPredictionHead
|
711 |
+
def __init__(self, config):
|
712 |
+
super().__init__(config)
|
713 |
+
|
714 |
+
if config.is_decoder:
|
715 |
+
logger.warning(
|
716 |
+
"If you want to use `MolformerForMaskedLM` make sure `config.is_decoder=False` for "
|
717 |
+
"bi-directional self-attention."
|
718 |
+
)
|
719 |
+
|
720 |
+
self.molformer = MolformerModel(config, add_pooling_layer=False)
|
721 |
+
self.lm_head = MolformerLMPredictionHead(config)
|
722 |
+
|
723 |
+
# Initialize weights and apply final processing
|
724 |
+
self.post_init()
|
725 |
+
|
726 |
+
def get_output_embeddings(self):
|
727 |
+
return self.lm_head.decoder
|
728 |
+
|
729 |
+
def set_output_embeddings(self, new_embeddings):
|
730 |
+
self.lm_head.decoder = new_embeddings
|
731 |
+
|
732 |
+
@add_start_docstrings_to_model_forward(MOLFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
733 |
+
@add_code_sample_docstrings(
|
734 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
735 |
+
output_type=MaskedLMOutput,
|
736 |
+
config_class=_CONFIG_FOR_DOC,
|
737 |
+
mask="P<mask>", # add extra token so labels line up
|
738 |
+
)
|
739 |
+
def forward(
|
740 |
+
self,
|
741 |
+
input_ids: Optional[torch.LongTensor] = None,
|
742 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
743 |
+
position_ids: Optional[torch.LongTensor] = None,
|
744 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
745 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
746 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
747 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
748 |
+
labels: Optional[torch.LongTensor] = None,
|
749 |
+
output_attentions: Optional[bool] = None,
|
750 |
+
output_hidden_states: Optional[bool] = None,
|
751 |
+
return_dict: Optional[bool] = None,
|
752 |
+
) -> Union[MaskedLMOutput, Tuple[torch.Tensor]]:
|
753 |
+
r"""
|
754 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
755 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
756 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
757 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
758 |
+
"""
|
759 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
760 |
+
|
761 |
+
outputs = self.molformer(
|
762 |
+
input_ids,
|
763 |
+
attention_mask=attention_mask,
|
764 |
+
position_ids=position_ids,
|
765 |
+
head_mask=head_mask,
|
766 |
+
inputs_embeds=inputs_embeds,
|
767 |
+
output_attentions=output_attentions,
|
768 |
+
output_hidden_states=output_hidden_states,
|
769 |
+
return_dict=return_dict,
|
770 |
+
)
|
771 |
+
|
772 |
+
sequence_output = outputs[0]
|
773 |
+
prediction_scores = self.lm_head(sequence_output)
|
774 |
+
|
775 |
+
masked_lm_loss = None
|
776 |
+
if labels is not None:
|
777 |
+
# move labels to correct device to enable model parallelism
|
778 |
+
labels = labels.to(prediction_scores.device)
|
779 |
+
loss_fct = CrossEntropyLoss() # -100 index = padding token
|
780 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
781 |
+
|
782 |
+
if not return_dict:
|
783 |
+
output = (prediction_scores,) + outputs[2:]
|
784 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
785 |
+
|
786 |
+
return MaskedLMOutput(
|
787 |
+
loss=masked_lm_loss,
|
788 |
+
logits=prediction_scores,
|
789 |
+
hidden_states=outputs.hidden_states,
|
790 |
+
attentions=outputs.attentions,
|
791 |
+
)
|
792 |
+
|
793 |
+
|
794 |
+
class MolformerClassificationHead(nn.Module):
|
795 |
+
"""Head for sequence-level classification tasks."""
|
796 |
+
|
797 |
+
def __init__(self, config):
|
798 |
+
super().__init__()
|
799 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
800 |
+
self.dense2 = nn.Linear(config.hidden_size, config.hidden_size)
|
801 |
+
self.dropout = nn.Dropout(
|
802 |
+
config.classifier_dropout_prob
|
803 |
+
if config.classifier_dropout_prob is not None
|
804 |
+
else config.hidden_dropout_prob
|
805 |
+
)
|
806 |
+
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
|
807 |
+
if isinstance(config.hidden_act, str):
|
808 |
+
self.classifier_act_fn = ACT2FN[config.hidden_act]
|
809 |
+
else:
|
810 |
+
self.classifier_act_fn = config.hidden_act
|
811 |
+
self.skip_connection = config.classifier_skip_connection
|
812 |
+
|
813 |
+
def forward(self, pooled_output):
|
814 |
+
hidden_state = self.dense(pooled_output)
|
815 |
+
hidden_state = self.dropout(hidden_state)
|
816 |
+
hidden_state = self.classifier_act_fn(hidden_state)
|
817 |
+
if self.skip_connection:
|
818 |
+
hidden_state = residual = hidden_state + pooled_output
|
819 |
+
hidden_state = self.dense2(hidden_state)
|
820 |
+
hidden_state = self.dropout(hidden_state)
|
821 |
+
hidden_state = self.classifier_act_fn(hidden_state)
|
822 |
+
if self.skip_connection:
|
823 |
+
hidden_state = hidden_state + residual
|
824 |
+
logits = self.out_proj(hidden_state)
|
825 |
+
return logits
|
826 |
+
|
827 |
+
|
828 |
+
@add_start_docstrings(
|
829 |
+
"""
|
830 |
+
Molformer Model transformer with a sequence classification/regression head on top (a linear layer on top of the
|
831 |
+
pooled output) e.g. for MoleculeNet tasks.
|
832 |
+
""",
|
833 |
+
MOLFORMER_START_DOCSTRING,
|
834 |
+
)
|
835 |
+
class MolformerForSequenceClassification(MolformerPreTrainedModel):
|
836 |
+
def __init__(self, config):
|
837 |
+
super().__init__(config)
|
838 |
+
self.num_labels = config.num_labels
|
839 |
+
self.config = config
|
840 |
+
|
841 |
+
self.molformer = MolformerModel(config, add_pooling_layer=True)
|
842 |
+
self.classifier = MolformerClassificationHead(config)
|
843 |
+
|
844 |
+
# Initialize weights and apply final processing
|
845 |
+
self.post_init()
|
846 |
+
|
847 |
+
@add_start_docstrings_to_model_forward(MOLFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
848 |
+
@add_code_sample_docstrings(
|
849 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
850 |
+
output_type=SequenceClassifierOutput,
|
851 |
+
config_class=_CONFIG_FOR_DOC,
|
852 |
+
)
|
853 |
+
def forward(
|
854 |
+
self,
|
855 |
+
input_ids: Optional[torch.LongTensor] = None,
|
856 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
857 |
+
position_ids: Optional[torch.LongTensor] = None,
|
858 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
859 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
860 |
+
labels: Optional[torch.LongTensor] = None,
|
861 |
+
output_attentions: Optional[bool] = None,
|
862 |
+
output_hidden_states: Optional[bool] = None,
|
863 |
+
return_dict: Optional[bool] = None,
|
864 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
865 |
+
r"""
|
866 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
867 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
868 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
869 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
870 |
+
"""
|
871 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
872 |
+
|
873 |
+
outputs = self.molformer(
|
874 |
+
input_ids,
|
875 |
+
attention_mask=attention_mask,
|
876 |
+
position_ids=position_ids,
|
877 |
+
head_mask=head_mask,
|
878 |
+
inputs_embeds=inputs_embeds,
|
879 |
+
output_attentions=output_attentions,
|
880 |
+
output_hidden_states=output_hidden_states,
|
881 |
+
return_dict=return_dict,
|
882 |
+
)
|
883 |
+
|
884 |
+
pooled_output = outputs[1]
|
885 |
+
logits = self.classifier(pooled_output)
|
886 |
+
|
887 |
+
loss = None
|
888 |
+
if labels is not None:
|
889 |
+
# move labels to correct device to enable model parallelism
|
890 |
+
labels = labels.to(logits.device)
|
891 |
+
if self.config.problem_type is None:
|
892 |
+
if self.num_labels == 1:
|
893 |
+
self.config.problem_type = "regression"
|
894 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
895 |
+
self.config.problem_type = "single_label_classification"
|
896 |
+
else:
|
897 |
+
self.config.problem_type = "multi_label_classification"
|
898 |
+
|
899 |
+
if self.config.problem_type == "regression":
|
900 |
+
loss_fct = MSELoss()
|
901 |
+
if self.num_labels == 1:
|
902 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
903 |
+
else:
|
904 |
+
loss = loss_fct(logits, labels)
|
905 |
+
elif self.config.problem_type == "single_label_classification":
|
906 |
+
loss_fct = CrossEntropyLoss()
|
907 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
908 |
+
elif self.config.problem_type == "multi_label_classification":
|
909 |
+
loss_fct = BCEWithLogitsLoss()
|
910 |
+
loss = loss_fct(logits, labels)
|
911 |
+
|
912 |
+
if not return_dict:
|
913 |
+
output = (logits,) + outputs[2:]
|
914 |
+
return ((loss,) + output) if loss is not None else output
|
915 |
+
|
916 |
+
return SequenceClassifierOutput(
|
917 |
+
loss=loss,
|
918 |
+
logits=logits,
|
919 |
+
hidden_states=outputs.hidden_states,
|
920 |
+
attentions=outputs.attentions,
|
921 |
+
)
|
tokenization_molformer.py
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Tokenization classes for Molformer."""
|
16 |
+
|
17 |
+
import collections
|
18 |
+
import json
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from typing import List, Optional, Tuple
|
22 |
+
|
23 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
24 |
+
from transformers.utils import logging
|
25 |
+
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json"}
|
30 |
+
|
31 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
32 |
+
"vocab_file": {
|
33 |
+
"ibm/MoLFormer-XL-both-10pct": "https://huggingface.co/ibm/MoLFormer-XL-both-10pct/resolve/main/vocab.json",
|
34 |
+
}
|
35 |
+
}
|
36 |
+
|
37 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
38 |
+
"ibm/MoLFormer-XL-both-10pct": 202,
|
39 |
+
}
|
40 |
+
|
41 |
+
|
42 |
+
class MolformerTokenizer(PreTrainedTokenizer):
|
43 |
+
r"""
|
44 |
+
Construct a Molformer tokenizer. Based on regex.
|
45 |
+
|
46 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
47 |
+
this superclass for more information regarding those methods.
|
48 |
+
|
49 |
+
Args:
|
50 |
+
vocab_file (`str`):
|
51 |
+
File containing the vocabulary.
|
52 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
53 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
54 |
+
token instead.
|
55 |
+
sep_token (`str`, *optional*, defaults to `"<eos>"`):
|
56 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
57 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
58 |
+
token of a sequence built with special tokens.
|
59 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
60 |
+
The token used for padding, for example when batching sequences of different lengths.
|
61 |
+
cls_token (`str`, *optional*, defaults to `"<bos>"`):
|
62 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
63 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
64 |
+
mask_token (`str`, *optional*, defaults to `"<mask>"`):
|
65 |
+
The token used for masking values. This is the token used when training this model with masked language
|
66 |
+
modeling. This is the token which the model will try to predict.
|
67 |
+
"""
|
68 |
+
|
69 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
70 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
71 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
72 |
+
model_input_names = ["input_ids", "attention_mask"]
|
73 |
+
|
74 |
+
def __init__(
|
75 |
+
self,
|
76 |
+
vocab_file,
|
77 |
+
unk_token="<unk>",
|
78 |
+
sep_token="<eos>",
|
79 |
+
pad_token="<pad>",
|
80 |
+
cls_token="<bos>",
|
81 |
+
mask_token="<mask>",
|
82 |
+
**kwargs,
|
83 |
+
):
|
84 |
+
if not os.path.isfile(vocab_file):
|
85 |
+
raise ValueError(
|
86 |
+
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from an IBM pretrained"
|
87 |
+
" model use `tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
|
88 |
+
)
|
89 |
+
with open(vocab_file, encoding="utf-8") as vocab_handle:
|
90 |
+
self.vocab = json.load(vocab_handle)
|
91 |
+
self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
|
92 |
+
self.pattern = (
|
93 |
+
r"(\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#|-|\+|\\|\/|:|~|@|\?|>|\*|\$|\%[0-9]{2}|[0-9])"
|
94 |
+
)
|
95 |
+
self.regex_tokenizer = re.compile(self.pattern)
|
96 |
+
|
97 |
+
super().__init__(
|
98 |
+
unk_token=unk_token,
|
99 |
+
sep_token=sep_token,
|
100 |
+
pad_token=pad_token,
|
101 |
+
cls_token=cls_token,
|
102 |
+
mask_token=mask_token,
|
103 |
+
**kwargs,
|
104 |
+
)
|
105 |
+
|
106 |
+
@property
|
107 |
+
def vocab_size(self):
|
108 |
+
return len(self.vocab)
|
109 |
+
|
110 |
+
def get_vocab(self):
|
111 |
+
return dict(self.vocab, **self.added_tokens_encoder)
|
112 |
+
|
113 |
+
def _tokenize(self, text):
|
114 |
+
split_tokens = self.regex_tokenizer.findall(text)
|
115 |
+
return split_tokens
|
116 |
+
|
117 |
+
def _convert_token_to_id(self, token):
|
118 |
+
"""Converts a token (str) in an id using the vocab."""
|
119 |
+
return self.vocab.get(token, self.vocab.get(self.unk_token))
|
120 |
+
|
121 |
+
def _convert_id_to_token(self, index):
|
122 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
123 |
+
return self.ids_to_tokens.get(index, self.unk_token)
|
124 |
+
|
125 |
+
def convert_tokens_to_string(self, tokens):
|
126 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
127 |
+
out_string = "".join(tokens).strip()
|
128 |
+
return out_string
|
129 |
+
|
130 |
+
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.build_inputs_with_special_tokens
|
131 |
+
def build_inputs_with_special_tokens(
|
132 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
133 |
+
) -> List[int]:
|
134 |
+
"""
|
135 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
136 |
+
adding special tokens. A BERT sequence has the following format:
|
137 |
+
|
138 |
+
- single sequence: `[CLS] X [SEP]`
|
139 |
+
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
140 |
+
|
141 |
+
Args:
|
142 |
+
token_ids_0 (`List[int]`):
|
143 |
+
List of IDs to which the special tokens will be added.
|
144 |
+
token_ids_1 (`List[int]`, *optional*):
|
145 |
+
Optional second list of IDs for sequence pairs.
|
146 |
+
|
147 |
+
Returns:
|
148 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
149 |
+
"""
|
150 |
+
if token_ids_1 is None:
|
151 |
+
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
152 |
+
cls = [self.cls_token_id]
|
153 |
+
sep = [self.sep_token_id]
|
154 |
+
return cls + token_ids_0 + sep + token_ids_1 + sep
|
155 |
+
|
156 |
+
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.get_special_tokens_mask
|
157 |
+
def get_special_tokens_mask(
|
158 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
159 |
+
) -> List[int]:
|
160 |
+
"""
|
161 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
162 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
163 |
+
|
164 |
+
Args:
|
165 |
+
token_ids_0 (`List[int]`):
|
166 |
+
List of IDs.
|
167 |
+
token_ids_1 (`List[int]`, *optional*):
|
168 |
+
Optional second list of IDs for sequence pairs.
|
169 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
170 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
171 |
+
|
172 |
+
Returns:
|
173 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
174 |
+
"""
|
175 |
+
|
176 |
+
if already_has_special_tokens:
|
177 |
+
return super().get_special_tokens_mask(
|
178 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
179 |
+
)
|
180 |
+
|
181 |
+
if token_ids_1 is not None:
|
182 |
+
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
|
183 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
184 |
+
|
185 |
+
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.create_token_type_ids_from_sequences
|
186 |
+
def create_token_type_ids_from_sequences(
|
187 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
188 |
+
) -> List[int]:
|
189 |
+
"""
|
190 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
|
191 |
+
pair mask has the following format:
|
192 |
+
|
193 |
+
```
|
194 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
195 |
+
| first sequence | second sequence |
|
196 |
+
```
|
197 |
+
|
198 |
+
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
|
199 |
+
|
200 |
+
Args:
|
201 |
+
token_ids_0 (`List[int]`):
|
202 |
+
List of IDs.
|
203 |
+
token_ids_1 (`List[int]`, *optional*):
|
204 |
+
Optional second list of IDs for sequence pairs.
|
205 |
+
|
206 |
+
Returns:
|
207 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
208 |
+
"""
|
209 |
+
sep = [self.sep_token_id]
|
210 |
+
cls = [self.cls_token_id]
|
211 |
+
if token_ids_1 is None:
|
212 |
+
return len(cls + token_ids_0 + sep) * [0]
|
213 |
+
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
|
214 |
+
|
215 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
216 |
+
if not os.path.isdir(save_directory):
|
217 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
218 |
+
return
|
219 |
+
vocab_file = os.path.join(
|
220 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
221 |
+
)
|
222 |
+
|
223 |
+
with open(vocab_file, "w", encoding="utf-8") as f:
|
224 |
+
f.write(json.dumps(self.vocab, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
|
225 |
+
|
226 |
+
return (vocab_file,)
|
tokenization_molformer_fast.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Tokenization classes for Molformer."""
|
16 |
+
from typing import List, Optional, Tuple
|
17 |
+
|
18 |
+
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
|
19 |
+
from transformers.utils import logging
|
20 |
+
from .tokenization_molformer import MolformerTokenizer
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "tokenizer_file": "tokenizer.json"}
|
26 |
+
|
27 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
28 |
+
"vocab_file": {
|
29 |
+
"ibm/MoLFormer-XL-both-10pct": "https://huggingface.co/ibm/MoLFormer-XL-both-10pct/resolve/main/vocab.json",
|
30 |
+
}
|
31 |
+
}
|
32 |
+
|
33 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
34 |
+
"ibm/MoLFormer-XL-both-10pct": 202,
|
35 |
+
}
|
36 |
+
|
37 |
+
|
38 |
+
class MolformerTokenizerFast(PreTrainedTokenizerFast):
|
39 |
+
r"""
|
40 |
+
Construct a "fast" Molformer tokenizer.
|
41 |
+
|
42 |
+
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
|
43 |
+
refer to this superclass for more information regarding those methods.
|
44 |
+
|
45 |
+
Args:
|
46 |
+
vocab_file (`str`, *optional*):
|
47 |
+
File containing the vocabulary.
|
48 |
+
tokenizer_file (`str`, *optional*):
|
49 |
+
The path to a tokenizer file to use instead of the vocab file.
|
50 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
51 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
52 |
+
token instead.
|
53 |
+
sep_token (`str`, *optional*, defaults to `"<eos>"`):
|
54 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
55 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
56 |
+
token of a sequence built with special tokens.
|
57 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
58 |
+
The token used for padding, for example when batching sequences of different lengths.
|
59 |
+
cls_token (`str`, *optional*, defaults to `"<bos>"`):
|
60 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
61 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
62 |
+
mask_token (`str`, *optional*, defaults to `"<mask>"`):
|
63 |
+
The token used for masking values. This is the token used when training this model with masked language
|
64 |
+
modeling. This is the token which the model will try to predict.
|
65 |
+
"""
|
66 |
+
|
67 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
68 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
69 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
70 |
+
model_input_names = ["input_ids", "attention_mask"]
|
71 |
+
slow_tokenizer_class = MolformerTokenizer
|
72 |
+
|
73 |
+
def __init__(
|
74 |
+
self,
|
75 |
+
vocab_file=None,
|
76 |
+
tokenizer_file=None,
|
77 |
+
unk_token="<unk>",
|
78 |
+
sep_token="<eos>",
|
79 |
+
pad_token="<pad>",
|
80 |
+
cls_token="<bos>",
|
81 |
+
mask_token="<mask>",
|
82 |
+
**kwargs,
|
83 |
+
):
|
84 |
+
super().__init__(
|
85 |
+
vocab_file,
|
86 |
+
tokenizer_file=tokenizer_file,
|
87 |
+
unk_token=unk_token,
|
88 |
+
sep_token=sep_token,
|
89 |
+
pad_token=pad_token,
|
90 |
+
cls_token=cls_token,
|
91 |
+
mask_token=mask_token,
|
92 |
+
**kwargs,
|
93 |
+
)
|
94 |
+
|
95 |
+
# Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast.build_inputs_with_special_tokens
|
96 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
97 |
+
"""
|
98 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
99 |
+
adding special tokens. A BERT sequence has the following format:
|
100 |
+
|
101 |
+
- single sequence: `[CLS] X [SEP]`
|
102 |
+
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
103 |
+
|
104 |
+
Args:
|
105 |
+
token_ids_0 (`List[int]`):
|
106 |
+
List of IDs to which the special tokens will be added.
|
107 |
+
token_ids_1 (`List[int]`, *optional*):
|
108 |
+
Optional second list of IDs for sequence pairs.
|
109 |
+
|
110 |
+
Returns:
|
111 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
112 |
+
"""
|
113 |
+
output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
114 |
+
|
115 |
+
if token_ids_1 is not None:
|
116 |
+
output += token_ids_1 + [self.sep_token_id]
|
117 |
+
|
118 |
+
return output
|
119 |
+
|
120 |
+
# Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast.create_token_type_ids_from_sequences
|
121 |
+
def create_token_type_ids_from_sequences(
|
122 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
123 |
+
) -> List[int]:
|
124 |
+
"""
|
125 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
|
126 |
+
pair mask has the following format:
|
127 |
+
|
128 |
+
```
|
129 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
130 |
+
| first sequence | second sequence |
|
131 |
+
```
|
132 |
+
|
133 |
+
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
|
134 |
+
|
135 |
+
Args:
|
136 |
+
token_ids_0 (`List[int]`):
|
137 |
+
List of IDs.
|
138 |
+
token_ids_1 (`List[int]`, *optional*):
|
139 |
+
Optional second list of IDs for sequence pairs.
|
140 |
+
|
141 |
+
Returns:
|
142 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
143 |
+
"""
|
144 |
+
sep = [self.sep_token_id]
|
145 |
+
cls = [self.cls_token_id]
|
146 |
+
if token_ids_1 is None:
|
147 |
+
return len(cls + token_ids_0 + sep) * [0]
|
148 |
+
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
|
149 |
+
|
150 |
+
# Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast.save_vocabulary
|
151 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
152 |
+
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
|
153 |
+
return tuple(files)
|
tokenizer.json
ADDED
@@ -0,0 +1,2520 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"version": "1.0",
|
3 |
+
"truncation": null,
|
4 |
+
"padding": null,
|
5 |
+
"added_tokens": [
|
6 |
+
{
|
7 |
+
"id": 0,
|
8 |
+
"content": "<bos>",
|
9 |
+
"single_word": false,
|
10 |
+
"lstrip": false,
|
11 |
+
"rstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"special": true
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"id": 1,
|
17 |
+
"content": "<eos>",
|
18 |
+
"single_word": false,
|
19 |
+
"lstrip": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"normalized": false,
|
22 |
+
"special": true
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"id": 2,
|
26 |
+
"content": "<pad>",
|
27 |
+
"single_word": false,
|
28 |
+
"lstrip": false,
|
29 |
+
"rstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"special": true
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"id": 3,
|
35 |
+
"content": "<mask>",
|
36 |
+
"single_word": false,
|
37 |
+
"lstrip": false,
|
38 |
+
"rstrip": false,
|
39 |
+
"normalized": false,
|
40 |
+
"special": true
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"id": 2361,
|
44 |
+
"content": "<unk>",
|
45 |
+
"single_word": false,
|
46 |
+
"lstrip": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"special": true
|
50 |
+
}
|
51 |
+
],
|
52 |
+
"normalizer": null,
|
53 |
+
"pre_tokenizer": {
|
54 |
+
"type": "Sequence",
|
55 |
+
"pretokenizers": [
|
56 |
+
{
|
57 |
+
"type": "Split",
|
58 |
+
"pattern": {
|
59 |
+
"Regex": "(\\[[^\\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\\(|\\)|\\.|=|#|-|\\+|\\\\|\\/|:|~|@|\\?|>|\\*|\\$|\\%[0-9]{2}|[0-9])"
|
60 |
+
},
|
61 |
+
"behavior": "Removed",
|
62 |
+
"invert": true
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"type": "Split",
|
66 |
+
"pattern": {
|
67 |
+
"Regex": "(\\[[^\\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\\(|\\)|\\.|=|#|-|\\+|\\\\|\\/|:|~|@|\\?|>|\\*|\\$|\\%[0-9]{2}|[0-9])"
|
68 |
+
},
|
69 |
+
"behavior": "Isolated",
|
70 |
+
"invert": false
|
71 |
+
}
|
72 |
+
]
|
73 |
+
},
|
74 |
+
"post_processor": {
|
75 |
+
"type": "TemplateProcessing",
|
76 |
+
"single": [
|
77 |
+
{
|
78 |
+
"SpecialToken": {
|
79 |
+
"id": "<bos>",
|
80 |
+
"type_id": 0
|
81 |
+
}
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"Sequence": {
|
85 |
+
"id": "A",
|
86 |
+
"type_id": 0
|
87 |
+
}
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"SpecialToken": {
|
91 |
+
"id": "<eos>",
|
92 |
+
"type_id": 0
|
93 |
+
}
|
94 |
+
}
|
95 |
+
],
|
96 |
+
"pair": [
|
97 |
+
{
|
98 |
+
"SpecialToken": {
|
99 |
+
"id": "<bos>",
|
100 |
+
"type_id": 0
|
101 |
+
}
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"Sequence": {
|
105 |
+
"id": "A",
|
106 |
+
"type_id": 0
|
107 |
+
}
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"SpecialToken": {
|
111 |
+
"id": "<eos>",
|
112 |
+
"type_id": 0
|
113 |
+
}
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"Sequence": {
|
117 |
+
"id": "B",
|
118 |
+
"type_id": 1
|
119 |
+
}
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"SpecialToken": {
|
123 |
+
"id": "<eos>",
|
124 |
+
"type_id": 1
|
125 |
+
}
|
126 |
+
}
|
127 |
+
],
|
128 |
+
"special_tokens": {
|
129 |
+
"<bos>": {
|
130 |
+
"id": "<bos>",
|
131 |
+
"ids": [
|
132 |
+
0
|
133 |
+
],
|
134 |
+
"tokens": [
|
135 |
+
"<bos>"
|
136 |
+
]
|
137 |
+
},
|
138 |
+
"<eos>": {
|
139 |
+
"id": "<eos>",
|
140 |
+
"ids": [
|
141 |
+
1
|
142 |
+
],
|
143 |
+
"tokens": [
|
144 |
+
"<eos>"
|
145 |
+
]
|
146 |
+
}
|
147 |
+
}
|
148 |
+
},
|
149 |
+
"decoder": {
|
150 |
+
"type": "Fuse"
|
151 |
+
},
|
152 |
+
"model": {
|
153 |
+
"type": "WordLevel",
|
154 |
+
"vocab": {
|
155 |
+
"<bos>": 0,
|
156 |
+
"<eos>": 1,
|
157 |
+
"<pad>": 2,
|
158 |
+
"<mask>": 3,
|
159 |
+
"C": 4,
|
160 |
+
"c": 5,
|
161 |
+
"(": 6,
|
162 |
+
")": 7,
|
163 |
+
"1": 8,
|
164 |
+
"O": 9,
|
165 |
+
"N": 10,
|
166 |
+
"2": 11,
|
167 |
+
"=": 12,
|
168 |
+
"n": 13,
|
169 |
+
"3": 14,
|
170 |
+
"[C@H]": 15,
|
171 |
+
"[C@@H]": 16,
|
172 |
+
"F": 17,
|
173 |
+
"S": 18,
|
174 |
+
"4": 19,
|
175 |
+
"Cl": 20,
|
176 |
+
"-": 21,
|
177 |
+
"o": 22,
|
178 |
+
"s": 23,
|
179 |
+
"[nH]": 24,
|
180 |
+
"#": 25,
|
181 |
+
"/": 26,
|
182 |
+
"Br": 27,
|
183 |
+
"[C@]": 28,
|
184 |
+
"[C@@]": 29,
|
185 |
+
"[N+]": 30,
|
186 |
+
"[O-]": 31,
|
187 |
+
"5": 32,
|
188 |
+
"\\": 33,
|
189 |
+
".": 34,
|
190 |
+
"I": 35,
|
191 |
+
"6": 36,
|
192 |
+
"[S@]": 37,
|
193 |
+
"[S@@]": 38,
|
194 |
+
"P": 39,
|
195 |
+
"[N-]": 40,
|
196 |
+
"[Si]": 41,
|
197 |
+
"7": 42,
|
198 |
+
"[n+]": 43,
|
199 |
+
"[2H]": 44,
|
200 |
+
"8": 45,
|
201 |
+
"[NH+]": 46,
|
202 |
+
"B": 47,
|
203 |
+
"9": 48,
|
204 |
+
"[C-]": 49,
|
205 |
+
"[Na+]": 50,
|
206 |
+
"[Cl-]": 51,
|
207 |
+
"[c-]": 52,
|
208 |
+
"[CH]": 53,
|
209 |
+
"%10": 54,
|
210 |
+
"[NH2+]": 55,
|
211 |
+
"[P+]": 56,
|
212 |
+
"[B]": 57,
|
213 |
+
"[I-]": 58,
|
214 |
+
"%11": 59,
|
215 |
+
"[CH2-]": 60,
|
216 |
+
"[O+]": 61,
|
217 |
+
"[NH3+]": 62,
|
218 |
+
"[C]": 63,
|
219 |
+
"[Br-]": 64,
|
220 |
+
"[IH2]": 65,
|
221 |
+
"[S-]": 66,
|
222 |
+
"[cH-]": 67,
|
223 |
+
"%12": 68,
|
224 |
+
"[nH+]": 69,
|
225 |
+
"[B-]": 70,
|
226 |
+
"[K+]": 71,
|
227 |
+
"[Sn]": 72,
|
228 |
+
"[Se]": 73,
|
229 |
+
"[CH-]": 74,
|
230 |
+
"[HH]": 75,
|
231 |
+
"[Y]": 76,
|
232 |
+
"[n-]": 77,
|
233 |
+
"[CH3-]": 78,
|
234 |
+
"[SiH]": 79,
|
235 |
+
"[S+]": 80,
|
236 |
+
"%13": 81,
|
237 |
+
"[SiH2]": 82,
|
238 |
+
"[Li+]": 83,
|
239 |
+
"[NH-]": 84,
|
240 |
+
"%14": 85,
|
241 |
+
"[Na]": 86,
|
242 |
+
"[CH2]": 87,
|
243 |
+
"[O-2]": 88,
|
244 |
+
"[U+2]": 89,
|
245 |
+
"[W]": 90,
|
246 |
+
"[Al]": 91,
|
247 |
+
"[P@]": 92,
|
248 |
+
"[Fe+2]": 93,
|
249 |
+
"[PH+]": 94,
|
250 |
+
"%15": 95,
|
251 |
+
"[Cl+3]": 96,
|
252 |
+
"[Zn+2]": 97,
|
253 |
+
"[Ir]": 98,
|
254 |
+
"[Mg+2]": 99,
|
255 |
+
"[Pt+2]": 100,
|
256 |
+
"[OH2+]": 101,
|
257 |
+
"[As]": 102,
|
258 |
+
"[Fe]": 103,
|
259 |
+
"[OH+]": 104,
|
260 |
+
"[Zr+2]": 105,
|
261 |
+
"[3H]": 106,
|
262 |
+
"[Ge]": 107,
|
263 |
+
"[SiH3]": 108,
|
264 |
+
"[OH-]": 109,
|
265 |
+
"[NH4+]": 110,
|
266 |
+
"[Cu+2]": 111,
|
267 |
+
"[P@@]": 112,
|
268 |
+
"p": 113,
|
269 |
+
"[Pt]": 114,
|
270 |
+
"%16": 115,
|
271 |
+
"[Ca+2]": 116,
|
272 |
+
"[Zr]": 117,
|
273 |
+
"[F-]": 118,
|
274 |
+
"[C+]": 119,
|
275 |
+
"[Ti]": 120,
|
276 |
+
"[P-]": 121,
|
277 |
+
"[V]": 122,
|
278 |
+
"[se]": 123,
|
279 |
+
"[U]": 124,
|
280 |
+
"[O]": 125,
|
281 |
+
"[Ni+2]": 126,
|
282 |
+
"[Zn]": 127,
|
283 |
+
"[Co]": 128,
|
284 |
+
"[Ni]": 129,
|
285 |
+
"[Pd+2]": 130,
|
286 |
+
"[Cu]": 131,
|
287 |
+
"%17": 132,
|
288 |
+
"[Cu+]": 133,
|
289 |
+
"[Te]": 134,
|
290 |
+
"[H+]": 135,
|
291 |
+
"[CH+]": 136,
|
292 |
+
"[Li]": 137,
|
293 |
+
"[Pd]": 138,
|
294 |
+
"[Mo]": 139,
|
295 |
+
"[Ru+2]": 140,
|
296 |
+
"[o+]": 141,
|
297 |
+
"[Re]": 142,
|
298 |
+
"[SH+]": 143,
|
299 |
+
"%18": 144,
|
300 |
+
"[Ac]": 145,
|
301 |
+
"[Cr]": 146,
|
302 |
+
"[NH2-]": 147,
|
303 |
+
"[K]": 148,
|
304 |
+
"[13CH2]": 149,
|
305 |
+
"[c]": 150,
|
306 |
+
"[Zr+4]": 151,
|
307 |
+
"[Tl]": 152,
|
308 |
+
"[13C]": 153,
|
309 |
+
"[Mn]": 154,
|
310 |
+
"[N@+]": 155,
|
311 |
+
"[Hg]": 156,
|
312 |
+
"[Rh]": 157,
|
313 |
+
"[Ti+4]": 158,
|
314 |
+
"[Sb]": 159,
|
315 |
+
"[Co+2]": 160,
|
316 |
+
"[Ag+]": 161,
|
317 |
+
"[Ru]": 162,
|
318 |
+
"%19": 163,
|
319 |
+
"[N@@+]": 164,
|
320 |
+
"[Ti+2]": 165,
|
321 |
+
"[Al+3]": 166,
|
322 |
+
"[Pb]": 167,
|
323 |
+
"[I+]": 168,
|
324 |
+
"[18F]": 169,
|
325 |
+
"[s+]": 170,
|
326 |
+
"[Rb+]": 171,
|
327 |
+
"[Ba+2]": 172,
|
328 |
+
"[H-]": 173,
|
329 |
+
"[Fe+3]": 174,
|
330 |
+
"[Ir+3]": 175,
|
331 |
+
"[13cH]": 176,
|
332 |
+
"%20": 177,
|
333 |
+
"[AlH2]": 178,
|
334 |
+
"[Au+]": 179,
|
335 |
+
"[13c]": 180,
|
336 |
+
"[SH2+]": 181,
|
337 |
+
"[Sn+2]": 182,
|
338 |
+
"[Mn+2]": 183,
|
339 |
+
"[Si-]": 184,
|
340 |
+
"[Ag]": 185,
|
341 |
+
"[N]": 186,
|
342 |
+
"[Bi]": 187,
|
343 |
+
"%21": 188,
|
344 |
+
"[In]": 189,
|
345 |
+
"[CH2+]": 190,
|
346 |
+
"[Y+3]": 191,
|
347 |
+
"[Ga]": 192,
|
348 |
+
"%22": 193,
|
349 |
+
"[Co+3]": 194,
|
350 |
+
"[Au]": 195,
|
351 |
+
"[13CH3]": 196,
|
352 |
+
"[Mg]": 197,
|
353 |
+
"[Cs+]": 198,
|
354 |
+
"[W+2]": 199,
|
355 |
+
"[Hf]": 200,
|
356 |
+
"[Zn+]": 201,
|
357 |
+
"[Se-]": 202,
|
358 |
+
"[S-2]": 203,
|
359 |
+
"[Ca]": 204,
|
360 |
+
"[pH]": 205,
|
361 |
+
"[ClH+]": 206,
|
362 |
+
"[Ti+3]": 207,
|
363 |
+
"%23": 208,
|
364 |
+
"[Ru+]": 209,
|
365 |
+
"[SH-]": 210,
|
366 |
+
"[13CH]": 211,
|
367 |
+
"[IH+]": 212,
|
368 |
+
"[Hf+4]": 213,
|
369 |
+
"[Rf]": 214,
|
370 |
+
"[OH3+]": 215,
|
371 |
+
"%24": 216,
|
372 |
+
"[Pt+4]": 217,
|
373 |
+
"[Zr+3]": 218,
|
374 |
+
"[PH3+]": 219,
|
375 |
+
"[Sr+2]": 220,
|
376 |
+
"[Cd+2]": 221,
|
377 |
+
"[Cd]": 222,
|
378 |
+
"%25": 223,
|
379 |
+
"[Os]": 224,
|
380 |
+
"[BH-]": 225,
|
381 |
+
"[Sn+4]": 226,
|
382 |
+
"[Cr+3]": 227,
|
383 |
+
"[Ru+3]": 228,
|
384 |
+
"[PH2+]": 229,
|
385 |
+
"[Rh+2]": 230,
|
386 |
+
"[V+2]": 231,
|
387 |
+
"%26": 232,
|
388 |
+
"[Gd+3]": 233,
|
389 |
+
"[Pb+2]": 234,
|
390 |
+
"[PH]": 235,
|
391 |
+
"[Hg+]": 236,
|
392 |
+
"[Mo+2]": 237,
|
393 |
+
"[AlH]": 238,
|
394 |
+
"[Sn+]": 239,
|
395 |
+
"%27": 240,
|
396 |
+
"[Pd+]": 241,
|
397 |
+
"b": 242,
|
398 |
+
"[Rh+3]": 243,
|
399 |
+
"[Hg+2]": 244,
|
400 |
+
"[15NH]": 245,
|
401 |
+
"[14C]": 246,
|
402 |
+
"%28": 247,
|
403 |
+
"[Mn+3]": 248,
|
404 |
+
"[Si+]": 249,
|
405 |
+
"[SeH]": 250,
|
406 |
+
"[13C@H]": 251,
|
407 |
+
"[NH]": 252,
|
408 |
+
"[Ga+3]": 253,
|
409 |
+
"[SiH-]": 254,
|
410 |
+
"[13C@@H]": 255,
|
411 |
+
"[Ce]": 256,
|
412 |
+
"[Au+3]": 257,
|
413 |
+
"[Bi+3]": 258,
|
414 |
+
"[15N]": 259,
|
415 |
+
"%29": 260,
|
416 |
+
"[BH3-]": 261,
|
417 |
+
"[14cH]": 262,
|
418 |
+
"[Ti+]": 263,
|
419 |
+
"[Gd]": 264,
|
420 |
+
"[cH+]": 265,
|
421 |
+
"[Cr+2]": 266,
|
422 |
+
"[Sb-]": 267,
|
423 |
+
"%30": 268,
|
424 |
+
"[Be+2]": 269,
|
425 |
+
"[Al+]": 270,
|
426 |
+
"[te]": 271,
|
427 |
+
"[11CH3]": 272,
|
428 |
+
"[Sm]": 273,
|
429 |
+
"[Pr]": 274,
|
430 |
+
"[La]": 275,
|
431 |
+
"%31": 276,
|
432 |
+
"[Al-]": 277,
|
433 |
+
"[Ta]": 278,
|
434 |
+
"[125I]": 279,
|
435 |
+
"[BH2-]": 280,
|
436 |
+
"[Nb]": 281,
|
437 |
+
"[Si@]": 282,
|
438 |
+
"%32": 283,
|
439 |
+
"[14c]": 284,
|
440 |
+
"[Sb+3]": 285,
|
441 |
+
"[Ba]": 286,
|
442 |
+
"%33": 287,
|
443 |
+
"[Os+2]": 288,
|
444 |
+
"[Si@@]": 289,
|
445 |
+
"[La+3]": 290,
|
446 |
+
"[15n]": 291,
|
447 |
+
"[15NH2]": 292,
|
448 |
+
"[Nd+3]": 293,
|
449 |
+
"%34": 294,
|
450 |
+
"[14CH2]": 295,
|
451 |
+
"[18O]": 296,
|
452 |
+
"[Nd]": 297,
|
453 |
+
"[GeH]": 298,
|
454 |
+
"[Ni+3]": 299,
|
455 |
+
"[Eu]": 300,
|
456 |
+
"[Dy+3]": 301,
|
457 |
+
"[Sc]": 302,
|
458 |
+
"%36": 303,
|
459 |
+
"[Se-2]": 304,
|
460 |
+
"[As+]": 305,
|
461 |
+
"%35": 306,
|
462 |
+
"[AsH]": 307,
|
463 |
+
"[Tb]": 308,
|
464 |
+
"[Sb+5]": 309,
|
465 |
+
"[Se+]": 310,
|
466 |
+
"[Ce+3]": 311,
|
467 |
+
"[c+]": 312,
|
468 |
+
"[In+3]": 313,
|
469 |
+
"[SnH]": 314,
|
470 |
+
"[Mo+4]": 315,
|
471 |
+
"%37": 316,
|
472 |
+
"[V+4]": 317,
|
473 |
+
"[Eu+3]": 318,
|
474 |
+
"[Hf+2]": 319,
|
475 |
+
"%38": 320,
|
476 |
+
"[Pt+]": 321,
|
477 |
+
"[p+]": 322,
|
478 |
+
"[123I]": 323,
|
479 |
+
"[Tl+]": 324,
|
480 |
+
"[Sm+3]": 325,
|
481 |
+
"%39": 326,
|
482 |
+
"[Yb+3]": 327,
|
483 |
+
"%40": 328,
|
484 |
+
"[Yb]": 329,
|
485 |
+
"[Os+]": 330,
|
486 |
+
"%41": 331,
|
487 |
+
"[10B]": 332,
|
488 |
+
"[Sc+3]": 333,
|
489 |
+
"[Al+2]": 334,
|
490 |
+
"%42": 335,
|
491 |
+
"[Sr]": 336,
|
492 |
+
"[Tb+3]": 337,
|
493 |
+
"[Po]": 338,
|
494 |
+
"[Tc]": 339,
|
495 |
+
"[PH-]": 340,
|
496 |
+
"[AlH3]": 341,
|
497 |
+
"[Ar]": 342,
|
498 |
+
"[U+4]": 343,
|
499 |
+
"[SnH2]": 344,
|
500 |
+
"[Cl+2]": 345,
|
501 |
+
"[si]": 346,
|
502 |
+
"[Fe+]": 347,
|
503 |
+
"[14CH3]": 348,
|
504 |
+
"[U+3]": 349,
|
505 |
+
"[Cl+]": 350,
|
506 |
+
"%43": 351,
|
507 |
+
"[GeH2]": 352,
|
508 |
+
"%44": 353,
|
509 |
+
"[Er+3]": 354,
|
510 |
+
"[Mo+3]": 355,
|
511 |
+
"[I+2]": 356,
|
512 |
+
"[Fe+4]": 357,
|
513 |
+
"[99Tc]": 358,
|
514 |
+
"%45": 359,
|
515 |
+
"[11C]": 360,
|
516 |
+
"%46": 361,
|
517 |
+
"[SnH3]": 362,
|
518 |
+
"[S]": 363,
|
519 |
+
"[Te+]": 364,
|
520 |
+
"[Er]": 365,
|
521 |
+
"[Lu+3]": 366,
|
522 |
+
"[11B]": 367,
|
523 |
+
"%47": 368,
|
524 |
+
"%48": 369,
|
525 |
+
"[P]": 370,
|
526 |
+
"[Tm]": 371,
|
527 |
+
"[Th]": 372,
|
528 |
+
"[Dy]": 373,
|
529 |
+
"[Pr+3]": 374,
|
530 |
+
"[Ta+5]": 375,
|
531 |
+
"[Nb+5]": 376,
|
532 |
+
"[Rb]": 377,
|
533 |
+
"[GeH3]": 378,
|
534 |
+
"[Br+2]": 379,
|
535 |
+
"%49": 380,
|
536 |
+
"[131I]": 381,
|
537 |
+
"[Fm]": 382,
|
538 |
+
"[Cs]": 383,
|
539 |
+
"[BH4-]": 384,
|
540 |
+
"[Lu]": 385,
|
541 |
+
"[15nH]": 386,
|
542 |
+
"%50": 387,
|
543 |
+
"[Ru+6]": 388,
|
544 |
+
"[b-]": 389,
|
545 |
+
"[Ho]": 390,
|
546 |
+
"[Th+4]": 391,
|
547 |
+
"[Ru+4]": 392,
|
548 |
+
"%52": 393,
|
549 |
+
"[14CH]": 394,
|
550 |
+
"%51": 395,
|
551 |
+
"[Cr+6]": 396,
|
552 |
+
"[18OH]": 397,
|
553 |
+
"[Ho+3]": 398,
|
554 |
+
"[Ce+4]": 399,
|
555 |
+
"[Bi+2]": 400,
|
556 |
+
"[Co+]": 401,
|
557 |
+
"%53": 402,
|
558 |
+
"[Yb+2]": 403,
|
559 |
+
"[Fe+6]": 404,
|
560 |
+
"[Be]": 405,
|
561 |
+
"%54": 406,
|
562 |
+
"[SH3+]": 407,
|
563 |
+
"[Np]": 408,
|
564 |
+
"[As-]": 409,
|
565 |
+
"%55": 410,
|
566 |
+
"[14C@@H]": 411,
|
567 |
+
"[Ir+2]": 412,
|
568 |
+
"[GaH3]": 413,
|
569 |
+
"[p-]": 414,
|
570 |
+
"[GeH4]": 415,
|
571 |
+
"[Sn+3]": 416,
|
572 |
+
"[Os+4]": 417,
|
573 |
+
"%56": 418,
|
574 |
+
"[14C@H]": 419,
|
575 |
+
"[sH+]": 420,
|
576 |
+
"[19F]": 421,
|
577 |
+
"[Eu+2]": 422,
|
578 |
+
"[TlH]": 423,
|
579 |
+
"%57": 424,
|
580 |
+
"[Cr+4]": 425,
|
581 |
+
"%58": 426,
|
582 |
+
"[B@@-]": 427,
|
583 |
+
"[SiH+]": 428,
|
584 |
+
"[At]": 429,
|
585 |
+
"[Am]": 430,
|
586 |
+
"[Fe+5]": 431,
|
587 |
+
"[AsH2]": 432,
|
588 |
+
"[Si+4]": 433,
|
589 |
+
"[B@-]": 434,
|
590 |
+
"[Pu]": 435,
|
591 |
+
"[SbH]": 436,
|
592 |
+
"[P-2]": 437,
|
593 |
+
"[Tm+3]": 438,
|
594 |
+
"*": 439,
|
595 |
+
"%59": 440,
|
596 |
+
"[se+]": 441,
|
597 |
+
"%60": 442,
|
598 |
+
"[oH+]": 443,
|
599 |
+
"[1H]": 444,
|
600 |
+
"[15N+]": 445,
|
601 |
+
"[124I]": 446,
|
602 |
+
"[S@@+]": 447,
|
603 |
+
"[P-3]": 448,
|
604 |
+
"[H]": 449,
|
605 |
+
"[IH2+]": 450,
|
606 |
+
"[TeH]": 451,
|
607 |
+
"[Xe]": 452,
|
608 |
+
"[PH4+]": 453,
|
609 |
+
"[Cr+]": 454,
|
610 |
+
"[Cm]": 455,
|
611 |
+
"[I+3]": 456,
|
612 |
+
"%61": 457,
|
613 |
+
"[Nb+2]": 458,
|
614 |
+
"[Ru+5]": 459,
|
615 |
+
"%62": 460,
|
616 |
+
"[Ta+2]": 461,
|
617 |
+
"[Tc+4]": 462,
|
618 |
+
"[CH3+]": 463,
|
619 |
+
"[Pm]": 464,
|
620 |
+
"[Si@H]": 465,
|
621 |
+
"[No]": 466,
|
622 |
+
"%63": 467,
|
623 |
+
"[Cr+5]": 468,
|
624 |
+
"[Th+2]": 469,
|
625 |
+
"[Zn-2]": 470,
|
626 |
+
"[13C@]": 471,
|
627 |
+
"[Lr]": 472,
|
628 |
+
"%64": 473,
|
629 |
+
"[99Tc+3]": 474,
|
630 |
+
"%65": 475,
|
631 |
+
"[13C@@]": 476,
|
632 |
+
"%66": 477,
|
633 |
+
"[Fe-]": 478,
|
634 |
+
"[17O]": 479,
|
635 |
+
"[siH]": 480,
|
636 |
+
"[Sb+]": 481,
|
637 |
+
"[OH]": 482,
|
638 |
+
"[IH]": 483,
|
639 |
+
"[11CH2]": 484,
|
640 |
+
"[Cf]": 485,
|
641 |
+
"[SiH2+]": 486,
|
642 |
+
"[Gd+2]": 487,
|
643 |
+
"[In+]": 488,
|
644 |
+
"[Si@@H]": 489,
|
645 |
+
"[Mn+]": 490,
|
646 |
+
"[99Tc+4]": 491,
|
647 |
+
"[Ga-]": 492,
|
648 |
+
"%67": 493,
|
649 |
+
"[S@+]": 494,
|
650 |
+
"[Ge+4]": 495,
|
651 |
+
"[Tl+3]": 496,
|
652 |
+
"[16OH]": 497,
|
653 |
+
"%68": 498,
|
654 |
+
"[2H-]": 499,
|
655 |
+
"[Ra]": 500,
|
656 |
+
"[si-]": 501,
|
657 |
+
"[NiH2]": 502,
|
658 |
+
"[P@@H]": 503,
|
659 |
+
"[Rh+]": 504,
|
660 |
+
"[12C]": 505,
|
661 |
+
"[35S]": 506,
|
662 |
+
"[32P]": 507,
|
663 |
+
"[SiH2-]": 508,
|
664 |
+
"[AlH2+]": 509,
|
665 |
+
"[16O]": 510,
|
666 |
+
"%69": 511,
|
667 |
+
"[BiH]": 512,
|
668 |
+
"[BiH2]": 513,
|
669 |
+
"[Zn-]": 514,
|
670 |
+
"[BH]": 515,
|
671 |
+
"[Tc+3]": 516,
|
672 |
+
"[Ir+]": 517,
|
673 |
+
"[Ni+]": 518,
|
674 |
+
"%70": 519,
|
675 |
+
"[InH2]": 520,
|
676 |
+
"[InH]": 521,
|
677 |
+
"[Nb+3]": 522,
|
678 |
+
"[PbH]": 523,
|
679 |
+
"[Bi+]": 524,
|
680 |
+
"%71": 525,
|
681 |
+
"[As+3]": 526,
|
682 |
+
"%72": 527,
|
683 |
+
"[18O-]": 528,
|
684 |
+
"[68Ga+3]": 529,
|
685 |
+
"%73": 530,
|
686 |
+
"[Pa]": 531,
|
687 |
+
"[76Br]": 532,
|
688 |
+
"[Tc+5]": 533,
|
689 |
+
"[pH+]": 534,
|
690 |
+
"[64Cu+2]": 535,
|
691 |
+
"[Ru+8]": 536,
|
692 |
+
"%74": 537,
|
693 |
+
"[PH2-]": 538,
|
694 |
+
"[Si+2]": 539,
|
695 |
+
"[17OH]": 540,
|
696 |
+
"[RuH]": 541,
|
697 |
+
"[111In+3]": 542,
|
698 |
+
"[AlH+]": 543,
|
699 |
+
"%75": 544,
|
700 |
+
"%76": 545,
|
701 |
+
"[W+]": 546,
|
702 |
+
"[SbH2]": 547,
|
703 |
+
"[PoH]": 548,
|
704 |
+
"[Ru-]": 549,
|
705 |
+
"[XeH]": 550,
|
706 |
+
"[Tc+2]": 551,
|
707 |
+
"[13C-]": 552,
|
708 |
+
"[Br+]": 553,
|
709 |
+
"[Pt-2]": 554,
|
710 |
+
"[Es]": 555,
|
711 |
+
"[Cu-]": 556,
|
712 |
+
"[Mg+]": 557,
|
713 |
+
"[3HH]": 558,
|
714 |
+
"[P@H]": 559,
|
715 |
+
"[ClH2+]": 560,
|
716 |
+
"%77": 561,
|
717 |
+
"[SH]": 562,
|
718 |
+
"[Au-]": 563,
|
719 |
+
"[2HH]": 564,
|
720 |
+
"%78": 565,
|
721 |
+
"[Sn-]": 566,
|
722 |
+
"[11CH]": 567,
|
723 |
+
"[PdH2]": 568,
|
724 |
+
"0": 569,
|
725 |
+
"[Os+6]": 570,
|
726 |
+
"%79": 571,
|
727 |
+
"[Mo+]": 572,
|
728 |
+
"%80": 573,
|
729 |
+
"[al]": 574,
|
730 |
+
"[PbH2]": 575,
|
731 |
+
"[64Cu]": 576,
|
732 |
+
"[Cl]": 577,
|
733 |
+
"[12CH3]": 578,
|
734 |
+
"%81": 579,
|
735 |
+
"[Tc+7]": 580,
|
736 |
+
"[11c]": 581,
|
737 |
+
"%82": 582,
|
738 |
+
"[Li-]": 583,
|
739 |
+
"[99Tc+5]": 584,
|
740 |
+
"[He]": 585,
|
741 |
+
"[12c]": 586,
|
742 |
+
"[Kr]": 587,
|
743 |
+
"[RuH+2]": 588,
|
744 |
+
"[35Cl]": 589,
|
745 |
+
"[Pd-2]": 590,
|
746 |
+
"[GaH2]": 591,
|
747 |
+
"[4H]": 592,
|
748 |
+
"[Sg]": 593,
|
749 |
+
"[Cu-2]": 594,
|
750 |
+
"[Br+3]": 595,
|
751 |
+
"%83": 596,
|
752 |
+
"[37Cl]": 597,
|
753 |
+
"[211At]": 598,
|
754 |
+
"[IrH+2]": 599,
|
755 |
+
"[Mt]": 600,
|
756 |
+
"[Ir-2]": 601,
|
757 |
+
"[In-]": 602,
|
758 |
+
"[12cH]": 603,
|
759 |
+
"[12CH2]": 604,
|
760 |
+
"[RuH2]": 605,
|
761 |
+
"[99Tc+7]": 606,
|
762 |
+
"%84": 607,
|
763 |
+
"[15n+]": 608,
|
764 |
+
"[ClH2+2]": 609,
|
765 |
+
"[16N]": 610,
|
766 |
+
"[111In]": 611,
|
767 |
+
"[Tc+]": 612,
|
768 |
+
"[Ru-2]": 613,
|
769 |
+
"[12CH]": 614,
|
770 |
+
"[si+]": 615,
|
771 |
+
"[Tc+6]": 616,
|
772 |
+
"%85": 617,
|
773 |
+
"%86": 618,
|
774 |
+
"[90Y]": 619,
|
775 |
+
"[Pd-]": 620,
|
776 |
+
"[188Re]": 621,
|
777 |
+
"[RuH+]": 622,
|
778 |
+
"[NiH]": 623,
|
779 |
+
"[SiH3-]": 624,
|
780 |
+
"[14n]": 625,
|
781 |
+
"[CH3]": 626,
|
782 |
+
"[14N]": 627,
|
783 |
+
"[10BH2]": 628,
|
784 |
+
"%88": 629,
|
785 |
+
"%89": 630,
|
786 |
+
"%90": 631,
|
787 |
+
"[34S]": 632,
|
788 |
+
"[77Br]": 633,
|
789 |
+
"[GaH]": 634,
|
790 |
+
"[Br]": 635,
|
791 |
+
"[Ge@]": 636,
|
792 |
+
"[B@@H-]": 637,
|
793 |
+
"[CuH]": 638,
|
794 |
+
"[SiH4]": 639,
|
795 |
+
"[3H-]": 640,
|
796 |
+
"%87": 641,
|
797 |
+
"%91": 642,
|
798 |
+
"%92": 643,
|
799 |
+
"[67Cu]": 644,
|
800 |
+
"[I]": 645,
|
801 |
+
"[177Lu]": 646,
|
802 |
+
"[ReH]": 647,
|
803 |
+
"[67Ga+3]": 648,
|
804 |
+
"[Db]": 649,
|
805 |
+
"[177Lu+3]": 650,
|
806 |
+
"[AlH2-]": 651,
|
807 |
+
"[Si+3]": 652,
|
808 |
+
"[Ti-2]": 653,
|
809 |
+
"[RuH+3]": 654,
|
810 |
+
"[al+]": 655,
|
811 |
+
"[68Ga]": 656,
|
812 |
+
"[2H+]": 657,
|
813 |
+
"[B@H-]": 658,
|
814 |
+
"[WH2]": 659,
|
815 |
+
"[OsH]": 660,
|
816 |
+
"[Ir-3]": 661,
|
817 |
+
"[AlH-]": 662,
|
818 |
+
"[Bk]": 663,
|
819 |
+
"[75Se]": 664,
|
820 |
+
"[14C@]": 665,
|
821 |
+
"[Pt-]": 666,
|
822 |
+
"[N@@H+]": 667,
|
823 |
+
"[Nb-]": 668,
|
824 |
+
"[13NH2]": 669,
|
825 |
+
"%93": 670,
|
826 |
+
"[186Re]": 671,
|
827 |
+
"[Tb+4]": 672,
|
828 |
+
"[PtH]": 673,
|
829 |
+
"[IrH2]": 674,
|
830 |
+
"[Hg-2]": 675,
|
831 |
+
"[AlH3-]": 676,
|
832 |
+
"[PdH+]": 677,
|
833 |
+
"[Md]": 678,
|
834 |
+
"[RhH+2]": 679,
|
835 |
+
"[11cH]": 680,
|
836 |
+
"[Co-2]": 681,
|
837 |
+
"[15N-]": 682,
|
838 |
+
"[ZrH2]": 683,
|
839 |
+
"%94": 684,
|
840 |
+
"[Hg-]": 685,
|
841 |
+
"[127I]": 686,
|
842 |
+
"[AsH2+]": 687,
|
843 |
+
"[MoH2]": 688,
|
844 |
+
"[Te+4]": 689,
|
845 |
+
"[14C@@]": 690,
|
846 |
+
"[As+5]": 691,
|
847 |
+
"[SnH+3]": 692,
|
848 |
+
"[Ge@@]": 693,
|
849 |
+
"[6Li+]": 694,
|
850 |
+
"[WH]": 695,
|
851 |
+
"[Ne]": 696,
|
852 |
+
"[14NH2]": 697,
|
853 |
+
"[14NH]": 698,
|
854 |
+
"[12C@@H]": 699,
|
855 |
+
"[Os+7]": 700,
|
856 |
+
"[RhH]": 701,
|
857 |
+
"[Al-3]": 702,
|
858 |
+
"[SnH+]": 703,
|
859 |
+
"[15NH3+]": 704,
|
860 |
+
"[Zr+]": 705,
|
861 |
+
"[197Hg+]": 706,
|
862 |
+
"%95": 707,
|
863 |
+
"%96": 708,
|
864 |
+
"[90Y+3]": 709,
|
865 |
+
"[Os-2]": 710,
|
866 |
+
"[98Tc+5]": 711,
|
867 |
+
"[15NH3]": 712,
|
868 |
+
"[bH-]": 713,
|
869 |
+
"[33P]": 714,
|
870 |
+
"[Zr-2]": 715,
|
871 |
+
"[15O]": 716,
|
872 |
+
"[Rh-]": 717,
|
873 |
+
"[PbH3]": 718,
|
874 |
+
"[PH2]": 719,
|
875 |
+
"[Ni-]": 720,
|
876 |
+
"[CuH+]": 721,
|
877 |
+
"%97": 722,
|
878 |
+
"%98": 723,
|
879 |
+
"%99": 724,
|
880 |
+
"[Os+5]": 725,
|
881 |
+
"[PtH+]": 726,
|
882 |
+
"[ReH4]": 727,
|
883 |
+
"[16NH]": 728,
|
884 |
+
"[82Br]": 729,
|
885 |
+
"[W-]": 730,
|
886 |
+
"[18F-]": 731,
|
887 |
+
"[15NH4+]": 732,
|
888 |
+
"[Se+4]": 733,
|
889 |
+
"[SeH-]": 734,
|
890 |
+
"[67Cu+2]": 735,
|
891 |
+
"[12C@H]": 736,
|
892 |
+
"[AsH3]": 737,
|
893 |
+
"[HgH]": 738,
|
894 |
+
"[10B-]": 739,
|
895 |
+
"[99Tc+6]": 740,
|
896 |
+
"[117Sn+4]": 741,
|
897 |
+
"[Te@]": 742,
|
898 |
+
"[P@+]": 743,
|
899 |
+
"[35SH]": 744,
|
900 |
+
"[SeH+]": 745,
|
901 |
+
"[Ni-2]": 746,
|
902 |
+
"[Al-2]": 747,
|
903 |
+
"[TeH2]": 748,
|
904 |
+
"[Bh]": 749,
|
905 |
+
"[99Tc+2]": 750,
|
906 |
+
"[Os+8]": 751,
|
907 |
+
"[PH-2]": 752,
|
908 |
+
"[7Li+]": 753,
|
909 |
+
"[14nH]": 754,
|
910 |
+
"[AlH+2]": 755,
|
911 |
+
"[18FH]": 756,
|
912 |
+
"[SnH4]": 757,
|
913 |
+
"[18O-2]": 758,
|
914 |
+
"[IrH]": 759,
|
915 |
+
"[13N]": 760,
|
916 |
+
"[Te@@]": 761,
|
917 |
+
"[Rh-3]": 762,
|
918 |
+
"[15NH+]": 763,
|
919 |
+
"[AsH3+]": 764,
|
920 |
+
"[SeH2]": 765,
|
921 |
+
"[AsH+]": 766,
|
922 |
+
"[CoH2]": 767,
|
923 |
+
"[16NH2]": 768,
|
924 |
+
"[AsH-]": 769,
|
925 |
+
"[203Hg+]": 770,
|
926 |
+
"[P@@+]": 771,
|
927 |
+
"[166Ho+3]": 772,
|
928 |
+
"[60Co+3]": 773,
|
929 |
+
"[13CH2-]": 774,
|
930 |
+
"[SeH2+]": 775,
|
931 |
+
"[75Br]": 776,
|
932 |
+
"[TlH2]": 777,
|
933 |
+
"[80Br]": 778,
|
934 |
+
"[siH+]": 779,
|
935 |
+
"[Ca+]": 780,
|
936 |
+
"[153Sm+3]": 781,
|
937 |
+
"[PdH]": 782,
|
938 |
+
"[225Ac]": 783,
|
939 |
+
"[13CH3-]": 784,
|
940 |
+
"[AlH4-]": 785,
|
941 |
+
"[FeH]": 786,
|
942 |
+
"[13CH-]": 787,
|
943 |
+
"[14C-]": 788,
|
944 |
+
"[11C-]": 789,
|
945 |
+
"[153Sm]": 790,
|
946 |
+
"[Re-]": 791,
|
947 |
+
"[te+]": 792,
|
948 |
+
"[13CH4]": 793,
|
949 |
+
"[ClH+2]": 794,
|
950 |
+
"[8CH2]": 795,
|
951 |
+
"[99Mo]": 796,
|
952 |
+
"[ClH3+3]": 797,
|
953 |
+
"[SbH3]": 798,
|
954 |
+
"[25Mg+2]": 799,
|
955 |
+
"[16N+]": 800,
|
956 |
+
"[SnH2+]": 801,
|
957 |
+
"[11C@H]": 802,
|
958 |
+
"[122I]": 803,
|
959 |
+
"[Re-2]": 804,
|
960 |
+
"[RuH2+2]": 805,
|
961 |
+
"[ZrH]": 806,
|
962 |
+
"[Bi-]": 807,
|
963 |
+
"[Pr+]": 808,
|
964 |
+
"[Rn]": 809,
|
965 |
+
"[Fr]": 810,
|
966 |
+
"[36Cl]": 811,
|
967 |
+
"[18o]": 812,
|
968 |
+
"[YH]": 813,
|
969 |
+
"[79Br]": 814,
|
970 |
+
"[121I]": 815,
|
971 |
+
"[113In+3]": 816,
|
972 |
+
"[TaH]": 817,
|
973 |
+
"[RhH2]": 818,
|
974 |
+
"[Ta-]": 819,
|
975 |
+
"[67Ga]": 820,
|
976 |
+
"[ZnH+]": 821,
|
977 |
+
"[SnH2-]": 822,
|
978 |
+
"[OsH2]": 823,
|
979 |
+
"[16F]": 824,
|
980 |
+
"[FeH2]": 825,
|
981 |
+
"[14O]": 826,
|
982 |
+
"[PbH2+2]": 827,
|
983 |
+
"[BH2]": 828,
|
984 |
+
"[6H]": 829,
|
985 |
+
"[125Te]": 830,
|
986 |
+
"[197Hg]": 831,
|
987 |
+
"[TaH2]": 832,
|
988 |
+
"[TaH3]": 833,
|
989 |
+
"[76As]": 834,
|
990 |
+
"[Nb-2]": 835,
|
991 |
+
"[14N+]": 836,
|
992 |
+
"[125I-]": 837,
|
993 |
+
"[33S]": 838,
|
994 |
+
"[IH2+2]": 839,
|
995 |
+
"[NH2]": 840,
|
996 |
+
"[PtH2]": 841,
|
997 |
+
"[MnH]": 842,
|
998 |
+
"[19C]": 843,
|
999 |
+
"[17F]": 844,
|
1000 |
+
"[1H-]": 845,
|
1001 |
+
"[SnH4+2]": 846,
|
1002 |
+
"[Mn-2]": 847,
|
1003 |
+
"[15NH2+]": 848,
|
1004 |
+
"[TiH2]": 849,
|
1005 |
+
"[ReH7]": 850,
|
1006 |
+
"[Cd-2]": 851,
|
1007 |
+
"[Fe-3]": 852,
|
1008 |
+
"[SH2]": 853,
|
1009 |
+
"[17O-]": 854,
|
1010 |
+
"[siH-]": 855,
|
1011 |
+
"[CoH+]": 856,
|
1012 |
+
"[VH]": 857,
|
1013 |
+
"[10BH]": 858,
|
1014 |
+
"[Ru-3]": 859,
|
1015 |
+
"[13O]": 860,
|
1016 |
+
"[5H]": 861,
|
1017 |
+
"[15n-]": 862,
|
1018 |
+
"[153Gd]": 863,
|
1019 |
+
"[12C@]": 864,
|
1020 |
+
"[11CH3-]": 865,
|
1021 |
+
"[IrH3]": 866,
|
1022 |
+
"[RuH3]": 867,
|
1023 |
+
"[74Se]": 868,
|
1024 |
+
"[Se@]": 869,
|
1025 |
+
"[Hf+]": 870,
|
1026 |
+
"[77Se]": 871,
|
1027 |
+
"[166Ho]": 872,
|
1028 |
+
"[59Fe+2]": 873,
|
1029 |
+
"[203Hg]": 874,
|
1030 |
+
"[18OH-]": 875,
|
1031 |
+
"[8CH]": 876,
|
1032 |
+
"[12C@@]": 877,
|
1033 |
+
"[11CH4]": 878,
|
1034 |
+
"[15C]": 879,
|
1035 |
+
"[249Cf]": 880,
|
1036 |
+
"[PbH4]": 881,
|
1037 |
+
"[64Zn]": 882,
|
1038 |
+
"[99Tc+]": 883,
|
1039 |
+
"[14c-]": 884,
|
1040 |
+
"[149Pm]": 885,
|
1041 |
+
"[IrH4]": 886,
|
1042 |
+
"[Se@@]": 887,
|
1043 |
+
"[13OH]": 888,
|
1044 |
+
"[14CH3-]": 889,
|
1045 |
+
"[28Si]": 890,
|
1046 |
+
"[Rh-2]": 891,
|
1047 |
+
"[Fe-2]": 892,
|
1048 |
+
"[131I-]": 893,
|
1049 |
+
"[51Cr]": 894,
|
1050 |
+
"[62Cu+2]": 895,
|
1051 |
+
"[81Br]": 896,
|
1052 |
+
"[121Sb]": 897,
|
1053 |
+
"[7Li]": 898,
|
1054 |
+
"[89Zr+4]": 899,
|
1055 |
+
"[SbH3+]": 900,
|
1056 |
+
"[11C@@H]": 901,
|
1057 |
+
"[98Tc]": 902,
|
1058 |
+
"[59Fe+3]": 903,
|
1059 |
+
"[BiH2+]": 904,
|
1060 |
+
"[SbH+]": 905,
|
1061 |
+
"[TiH]": 906,
|
1062 |
+
"[14NH3]": 907,
|
1063 |
+
"[15OH]": 908,
|
1064 |
+
"[119Sn]": 909,
|
1065 |
+
"[201Hg]": 910,
|
1066 |
+
"[MnH+]": 911,
|
1067 |
+
"[201Tl]": 912,
|
1068 |
+
"[51Cr+3]": 913,
|
1069 |
+
"[123I-]": 914,
|
1070 |
+
"[MoH]": 915,
|
1071 |
+
"[AlH6-3]": 916,
|
1072 |
+
"[MnH2]": 917,
|
1073 |
+
"[WH3]": 918,
|
1074 |
+
"[213Bi+3]": 919,
|
1075 |
+
"[SnH2+2]": 920,
|
1076 |
+
"[123IH]": 921,
|
1077 |
+
"[13CH+]": 922,
|
1078 |
+
"[Zr-]": 923,
|
1079 |
+
"[74As]": 924,
|
1080 |
+
"[13C+]": 925,
|
1081 |
+
"[32P+]": 926,
|
1082 |
+
"[KrH]": 927,
|
1083 |
+
"[SiH+2]": 928,
|
1084 |
+
"[ClH3+2]": 929,
|
1085 |
+
"[13NH]": 930,
|
1086 |
+
"[9CH2]": 931,
|
1087 |
+
"[ZrH2+2]": 932,
|
1088 |
+
"[87Sr+2]": 933,
|
1089 |
+
"[35s]": 934,
|
1090 |
+
"[239Pu]": 935,
|
1091 |
+
"[198Au]": 936,
|
1092 |
+
"[241Am]": 937,
|
1093 |
+
"[203Hg+2]": 938,
|
1094 |
+
"[V+]": 939,
|
1095 |
+
"[YH2]": 940,
|
1096 |
+
"[195Pt]": 941,
|
1097 |
+
"[203Pb]": 942,
|
1098 |
+
"[RuH4]": 943,
|
1099 |
+
"[ThH2]": 944,
|
1100 |
+
"[AuH]": 945,
|
1101 |
+
"[66Ga+3]": 946,
|
1102 |
+
"[11B-]": 947,
|
1103 |
+
"[F]": 948,
|
1104 |
+
"[24Na+]": 949,
|
1105 |
+
"[85Sr+2]": 950,
|
1106 |
+
"[201Tl+]": 951,
|
1107 |
+
"[14CH4]": 952,
|
1108 |
+
"[32S]": 953,
|
1109 |
+
"[TeH2+]": 954,
|
1110 |
+
"[ClH2+3]": 955,
|
1111 |
+
"[AgH]": 956,
|
1112 |
+
"[Ge@H]": 957,
|
1113 |
+
"[44Ca+2]": 958,
|
1114 |
+
"[Os-]": 959,
|
1115 |
+
"[31P]": 960,
|
1116 |
+
"[15nH+]": 961,
|
1117 |
+
"[SbH4]": 962,
|
1118 |
+
"[TiH+]": 963,
|
1119 |
+
"[Ba+]": 964,
|
1120 |
+
"[57Co+2]": 965,
|
1121 |
+
"[Ta+]": 966,
|
1122 |
+
"[125IH]": 967,
|
1123 |
+
"[77As]": 968,
|
1124 |
+
"[129I]": 969,
|
1125 |
+
"[Fe-4]": 970,
|
1126 |
+
"[Ta-2]": 971,
|
1127 |
+
"[19O]": 972,
|
1128 |
+
"[12O]": 973,
|
1129 |
+
"[BiH3]": 974,
|
1130 |
+
"[237Np]": 975,
|
1131 |
+
"[252Cf]": 976,
|
1132 |
+
"[86Y]": 977,
|
1133 |
+
"[Cr-2]": 978,
|
1134 |
+
"[89Y]": 979,
|
1135 |
+
"[195Pt+2]": 980,
|
1136 |
+
"[si+2]": 981,
|
1137 |
+
"[58Fe+2]": 982,
|
1138 |
+
"[Hs]": 983,
|
1139 |
+
"[S@@H]": 984,
|
1140 |
+
"[8CH4]": 985,
|
1141 |
+
"[164Dy+3]": 986,
|
1142 |
+
"[47Ca+2]": 987,
|
1143 |
+
"[57Co]": 988,
|
1144 |
+
"[NbH2]": 989,
|
1145 |
+
"[ReH2]": 990,
|
1146 |
+
"[ZnH2]": 991,
|
1147 |
+
"[CrH2]": 992,
|
1148 |
+
"[17NH]": 993,
|
1149 |
+
"[ZrH3]": 994,
|
1150 |
+
"[RhH3]": 995,
|
1151 |
+
"[12C-]": 996,
|
1152 |
+
"[18O+]": 997,
|
1153 |
+
"[Bi-2]": 998,
|
1154 |
+
"[ClH4+3]": 999,
|
1155 |
+
"[Ni-3]": 1000,
|
1156 |
+
"[Ag-]": 1001,
|
1157 |
+
"[111In-]": 1002,
|
1158 |
+
"[Mo-2]": 1003,
|
1159 |
+
"[55Fe+3]": 1004,
|
1160 |
+
"[204Hg+]": 1005,
|
1161 |
+
"[35Cl-]": 1006,
|
1162 |
+
"[211Pb]": 1007,
|
1163 |
+
"[75Ge]": 1008,
|
1164 |
+
"[8B]": 1009,
|
1165 |
+
"[TeH3]": 1010,
|
1166 |
+
"[SnH3+]": 1011,
|
1167 |
+
"[Zr-3]": 1012,
|
1168 |
+
"[28F]": 1013,
|
1169 |
+
"[249Bk]": 1014,
|
1170 |
+
"[169Yb]": 1015,
|
1171 |
+
"[34SH]": 1016,
|
1172 |
+
"[6Li]": 1017,
|
1173 |
+
"[94Tc]": 1018,
|
1174 |
+
"[197Au]": 1019,
|
1175 |
+
"[195Pt+4]": 1020,
|
1176 |
+
"[169Yb+3]": 1021,
|
1177 |
+
"[32Cl]": 1022,
|
1178 |
+
"[82Se]": 1023,
|
1179 |
+
"[159Gd+3]": 1024,
|
1180 |
+
"[213Bi]": 1025,
|
1181 |
+
"[CoH+2]": 1026,
|
1182 |
+
"[36S]": 1027,
|
1183 |
+
"[35P]": 1028,
|
1184 |
+
"[Ru-4]": 1029,
|
1185 |
+
"[Cr-3]": 1030,
|
1186 |
+
"[60Co]": 1031,
|
1187 |
+
"[1H+]": 1032,
|
1188 |
+
"[18CH2]": 1033,
|
1189 |
+
"[Cd-]": 1034,
|
1190 |
+
"[152Sm+3]": 1035,
|
1191 |
+
"[106Ru]": 1036,
|
1192 |
+
"[238Pu]": 1037,
|
1193 |
+
"[220Rn]": 1038,
|
1194 |
+
"[45Ca+2]": 1039,
|
1195 |
+
"[89Sr+2]": 1040,
|
1196 |
+
"[239Np]": 1041,
|
1197 |
+
"[90Sr+2]": 1042,
|
1198 |
+
"[137Cs+]": 1043,
|
1199 |
+
"[165Dy]": 1044,
|
1200 |
+
"[68GaH3]": 1045,
|
1201 |
+
"[65Zn+2]": 1046,
|
1202 |
+
"[89Zr]": 1047,
|
1203 |
+
"[BiH2+2]": 1048,
|
1204 |
+
"[62Cu]": 1049,
|
1205 |
+
"[165Dy+3]": 1050,
|
1206 |
+
"[238U]": 1051,
|
1207 |
+
"[105Rh+3]": 1052,
|
1208 |
+
"[70Zn]": 1053,
|
1209 |
+
"[12B]": 1054,
|
1210 |
+
"[12OH]": 1055,
|
1211 |
+
"[18CH]": 1056,
|
1212 |
+
"[17CH]": 1057,
|
1213 |
+
"[42K]": 1058,
|
1214 |
+
"[76Br-]": 1059,
|
1215 |
+
"[71As]": 1060,
|
1216 |
+
"[NbH3]": 1061,
|
1217 |
+
"[ReH3]": 1062,
|
1218 |
+
"[OsH-]": 1063,
|
1219 |
+
"[WH4]": 1064,
|
1220 |
+
"[MoH3]": 1065,
|
1221 |
+
"[OsH4]": 1066,
|
1222 |
+
"[RuH6]": 1067,
|
1223 |
+
"[PtH3]": 1068,
|
1224 |
+
"[CuH2]": 1069,
|
1225 |
+
"[CoH3]": 1070,
|
1226 |
+
"[TiH4]": 1071,
|
1227 |
+
"[64Zn+2]": 1072,
|
1228 |
+
"[Si-2]": 1073,
|
1229 |
+
"[79BrH]": 1074,
|
1230 |
+
"[14CH2-]": 1075,
|
1231 |
+
"[PtH2+2]": 1076,
|
1232 |
+
"[Os-3]": 1077,
|
1233 |
+
"[29Si]": 1078,
|
1234 |
+
"[Ti-]": 1079,
|
1235 |
+
"[Se+6]": 1080,
|
1236 |
+
"[22Na+]": 1081,
|
1237 |
+
"[42K+]": 1082,
|
1238 |
+
"[131Cs+]": 1083,
|
1239 |
+
"[86Rb+]": 1084,
|
1240 |
+
"[134Cs+]": 1085,
|
1241 |
+
"[209Po]": 1086,
|
1242 |
+
"[208Po]": 1087,
|
1243 |
+
"[81Rb+]": 1088,
|
1244 |
+
"[203Tl+]": 1089,
|
1245 |
+
"[Zr-4]": 1090,
|
1246 |
+
"[148Sm]": 1091,
|
1247 |
+
"[147Sm]": 1092,
|
1248 |
+
"[37Cl-]": 1093,
|
1249 |
+
"[12CH4]": 1094,
|
1250 |
+
"[Ge@@H]": 1095,
|
1251 |
+
"[63Cu]": 1096,
|
1252 |
+
"[13CH2+]": 1097,
|
1253 |
+
"[AsH2-]": 1098,
|
1254 |
+
"[CeH]": 1099,
|
1255 |
+
"[SnH-]": 1100,
|
1256 |
+
"[UH]": 1101,
|
1257 |
+
"[9c]": 1102,
|
1258 |
+
"[21CH3]": 1103,
|
1259 |
+
"[TeH+]": 1104,
|
1260 |
+
"[57Co+3]": 1105,
|
1261 |
+
"[8BH2]": 1106,
|
1262 |
+
"[12BH2]": 1107,
|
1263 |
+
"[19BH2]": 1108,
|
1264 |
+
"[9BH2]": 1109,
|
1265 |
+
"[YbH2]": 1110,
|
1266 |
+
"[CrH+2]": 1111,
|
1267 |
+
"[208Bi]": 1112,
|
1268 |
+
"[152Gd]": 1113,
|
1269 |
+
"[61Cu]": 1114,
|
1270 |
+
"[115In]": 1115,
|
1271 |
+
"[60Co+2]": 1116,
|
1272 |
+
"[13NH2-]": 1117,
|
1273 |
+
"[120I]": 1118,
|
1274 |
+
"[18OH2]": 1119,
|
1275 |
+
"[75SeH]": 1120,
|
1276 |
+
"[SbH2+]": 1121,
|
1277 |
+
"[144Ce]": 1122,
|
1278 |
+
"[16n]": 1123,
|
1279 |
+
"[113In]": 1124,
|
1280 |
+
"[22nH]": 1125,
|
1281 |
+
"[129I-]": 1126,
|
1282 |
+
"[InH3]": 1127,
|
1283 |
+
"[32PH3]": 1128,
|
1284 |
+
"[234U]": 1129,
|
1285 |
+
"[235U]": 1130,
|
1286 |
+
"[59Fe]": 1131,
|
1287 |
+
"[82Rb+]": 1132,
|
1288 |
+
"[65Zn]": 1133,
|
1289 |
+
"[244Cm]": 1134,
|
1290 |
+
"[147Pm]": 1135,
|
1291 |
+
"[91Y]": 1136,
|
1292 |
+
"[237Pu]": 1137,
|
1293 |
+
"[231Pa]": 1138,
|
1294 |
+
"[253Cf]": 1139,
|
1295 |
+
"[127Te]": 1140,
|
1296 |
+
"[187Re]": 1141,
|
1297 |
+
"[236Np]": 1142,
|
1298 |
+
"[235Np]": 1143,
|
1299 |
+
"[72Zn]": 1144,
|
1300 |
+
"[253Es]": 1145,
|
1301 |
+
"[159Dy]": 1146,
|
1302 |
+
"[62Zn]": 1147,
|
1303 |
+
"[101Tc]": 1148,
|
1304 |
+
"[149Tb]": 1149,
|
1305 |
+
"[124I-]": 1150,
|
1306 |
+
"[SeH3+]": 1151,
|
1307 |
+
"[210Pb]": 1152,
|
1308 |
+
"[40K]": 1153,
|
1309 |
+
"[210Po]": 1154,
|
1310 |
+
"[214Pb]": 1155,
|
1311 |
+
"[218Po]": 1156,
|
1312 |
+
"[214Po]": 1157,
|
1313 |
+
"[7Be]": 1158,
|
1314 |
+
"[212Pb]": 1159,
|
1315 |
+
"[205Pb]": 1160,
|
1316 |
+
"[209Pb]": 1161,
|
1317 |
+
"[123Te]": 1162,
|
1318 |
+
"[202Pb]": 1163,
|
1319 |
+
"[72As]": 1164,
|
1320 |
+
"[201Pb]": 1165,
|
1321 |
+
"[70As]": 1166,
|
1322 |
+
"[73Ge]": 1167,
|
1323 |
+
"[200Pb]": 1168,
|
1324 |
+
"[198Pb]": 1169,
|
1325 |
+
"[66Ga]": 1170,
|
1326 |
+
"[73Se]": 1171,
|
1327 |
+
"[195Pb]": 1172,
|
1328 |
+
"[199Pb]": 1173,
|
1329 |
+
"[144Ce+3]": 1174,
|
1330 |
+
"[235U+2]": 1175,
|
1331 |
+
"[90Tc]": 1176,
|
1332 |
+
"[114In+3]": 1177,
|
1333 |
+
"[128I]": 1178,
|
1334 |
+
"[100Tc+]": 1179,
|
1335 |
+
"[82Br-]": 1180,
|
1336 |
+
"[191Pt+2]": 1181,
|
1337 |
+
"[191Pt+4]": 1182,
|
1338 |
+
"[193Pt+4]": 1183,
|
1339 |
+
"[31PH3]": 1184,
|
1340 |
+
"[125I+2]": 1185,
|
1341 |
+
"[131I+2]": 1186,
|
1342 |
+
"[125Te+4]": 1187,
|
1343 |
+
"[82Sr+2]": 1188,
|
1344 |
+
"[149Sm]": 1189,
|
1345 |
+
"[81BrH]": 1190,
|
1346 |
+
"[129Xe]": 1191,
|
1347 |
+
"[193Pt+2]": 1192,
|
1348 |
+
"[123I+2]": 1193,
|
1349 |
+
"[Cr-]": 1194,
|
1350 |
+
"[Co-]": 1195,
|
1351 |
+
"[227Th+4]": 1196,
|
1352 |
+
"[249Cf+3]": 1197,
|
1353 |
+
"[252Cf+3]": 1198,
|
1354 |
+
"[187Os]": 1199,
|
1355 |
+
"[16O-]": 1200,
|
1356 |
+
"[17O+]": 1201,
|
1357 |
+
"[16OH-]": 1202,
|
1358 |
+
"[98Tc+7]": 1203,
|
1359 |
+
"[58Co+2]": 1204,
|
1360 |
+
"[69Ga+3]": 1205,
|
1361 |
+
"[57Fe+2]": 1206,
|
1362 |
+
"[43K+]": 1207,
|
1363 |
+
"[16C]": 1208,
|
1364 |
+
"[52Fe+3]": 1209,
|
1365 |
+
"[SeH5]": 1210,
|
1366 |
+
"[194Pb]": 1211,
|
1367 |
+
"[196Pb]": 1212,
|
1368 |
+
"[197Pb]": 1213,
|
1369 |
+
"[213Pb]": 1214,
|
1370 |
+
"[9B]": 1215,
|
1371 |
+
"[19B]": 1216,
|
1372 |
+
"[11CH-]": 1217,
|
1373 |
+
"[9CH]": 1218,
|
1374 |
+
"[20OH]": 1219,
|
1375 |
+
"[25OH]": 1220,
|
1376 |
+
"[8cH]": 1221,
|
1377 |
+
"[TiH+3]": 1222,
|
1378 |
+
"[SnH6+3]": 1223,
|
1379 |
+
"[N@H+]": 1224,
|
1380 |
+
"[52Mn+2]": 1225,
|
1381 |
+
"[64Ga]": 1226,
|
1382 |
+
"[13B]": 1227,
|
1383 |
+
"[216Bi]": 1228,
|
1384 |
+
"[117Sn+2]": 1229,
|
1385 |
+
"[232Th]": 1230,
|
1386 |
+
"[SnH+2]": 1231,
|
1387 |
+
"[BiH5]": 1232,
|
1388 |
+
"[77Kr]": 1233,
|
1389 |
+
"[103Cd]": 1234,
|
1390 |
+
"[62Ni]": 1235,
|
1391 |
+
"[LaH3]": 1236,
|
1392 |
+
"[SmH3]": 1237,
|
1393 |
+
"[EuH3]": 1238,
|
1394 |
+
"[MoH5]": 1239,
|
1395 |
+
"[64Ni]": 1240,
|
1396 |
+
"[66Zn]": 1241,
|
1397 |
+
"[68Zn]": 1242,
|
1398 |
+
"[186W]": 1243,
|
1399 |
+
"[FeH4]": 1244,
|
1400 |
+
"[MoH4]": 1245,
|
1401 |
+
"[HgH2]": 1246,
|
1402 |
+
"[15NH2-]": 1247,
|
1403 |
+
"[UH2]": 1248,
|
1404 |
+
"[204Hg]": 1249,
|
1405 |
+
"[GaH4-]": 1250,
|
1406 |
+
"[ThH4]": 1251,
|
1407 |
+
"[WH6]": 1252,
|
1408 |
+
"[PtH4]": 1253,
|
1409 |
+
"[VH2]": 1254,
|
1410 |
+
"[UH3]": 1255,
|
1411 |
+
"[FeH3]": 1256,
|
1412 |
+
"[RuH5]": 1257,
|
1413 |
+
"[BiH4]": 1258,
|
1414 |
+
"[80Br-]": 1259,
|
1415 |
+
"[CeH3]": 1260,
|
1416 |
+
"[37ClH]": 1261,
|
1417 |
+
"[157Gd+3]": 1262,
|
1418 |
+
"[205Tl]": 1263,
|
1419 |
+
"[203Tl]": 1264,
|
1420 |
+
"[62Cu+]": 1265,
|
1421 |
+
"[64Cu+]": 1266,
|
1422 |
+
"[61Cu+]": 1267,
|
1423 |
+
"[37SH2]": 1268,
|
1424 |
+
"[30Si]": 1269,
|
1425 |
+
"[28Al]": 1270,
|
1426 |
+
"[19OH2]": 1271,
|
1427 |
+
"[8He]": 1272,
|
1428 |
+
"[6He]": 1273,
|
1429 |
+
"[153Pm]": 1274,
|
1430 |
+
"[209Bi]": 1275,
|
1431 |
+
"[66Zn+2]": 1276,
|
1432 |
+
"[10CH4]": 1277,
|
1433 |
+
"[191Ir]": 1278,
|
1434 |
+
"[66Cu]": 1279,
|
1435 |
+
"[16O+]": 1280,
|
1436 |
+
"[25O]": 1281,
|
1437 |
+
"[10c]": 1282,
|
1438 |
+
"[Co-3]": 1283,
|
1439 |
+
"[Sn@@]": 1284,
|
1440 |
+
"[17OH-]": 1285,
|
1441 |
+
"[206Po]": 1286,
|
1442 |
+
"[204Po]": 1287,
|
1443 |
+
"[202Po]": 1288,
|
1444 |
+
"[201Po]": 1289,
|
1445 |
+
"[200Po]": 1290,
|
1446 |
+
"[199Po]": 1291,
|
1447 |
+
"[198Po]": 1292,
|
1448 |
+
"[197Po]": 1293,
|
1449 |
+
"[196Po]": 1294,
|
1450 |
+
"[195Po]": 1295,
|
1451 |
+
"[194Po]": 1296,
|
1452 |
+
"[193Po]": 1297,
|
1453 |
+
"[192Po]": 1298,
|
1454 |
+
"[191Po]": 1299,
|
1455 |
+
"[190Po]": 1300,
|
1456 |
+
"[217Po]": 1301,
|
1457 |
+
"[BiH4-]": 1302,
|
1458 |
+
"[TeH4]": 1303,
|
1459 |
+
"[222Ra]": 1304,
|
1460 |
+
"[62Ga]": 1305,
|
1461 |
+
"[39Ar]": 1306,
|
1462 |
+
"[144Sm]": 1307,
|
1463 |
+
"[58Fe]": 1308,
|
1464 |
+
"[153Eu]": 1309,
|
1465 |
+
"[85Rb]": 1310,
|
1466 |
+
"[171Yb]": 1311,
|
1467 |
+
"[172Yb]": 1312,
|
1468 |
+
"[114Cd]": 1313,
|
1469 |
+
"[51Fe]": 1314,
|
1470 |
+
"[142Ce]": 1315,
|
1471 |
+
"[207Tl]": 1316,
|
1472 |
+
"[92Mo]": 1317,
|
1473 |
+
"[115Sn]": 1318,
|
1474 |
+
"[140Ce]": 1319,
|
1475 |
+
"[202Hg]": 1320,
|
1476 |
+
"[180W]": 1321,
|
1477 |
+
"[182W]": 1322,
|
1478 |
+
"[183W]": 1323,
|
1479 |
+
"[184W]": 1324,
|
1480 |
+
"[96Mo]": 1325,
|
1481 |
+
"[47Ti]": 1326,
|
1482 |
+
"[111Cd]": 1327,
|
1483 |
+
"[143Nd]": 1328,
|
1484 |
+
"[145Nd]": 1329,
|
1485 |
+
"[126Te]": 1330,
|
1486 |
+
"[128Te]": 1331,
|
1487 |
+
"[130Te]": 1332,
|
1488 |
+
"[185Re]": 1333,
|
1489 |
+
"[97Mo]": 1334,
|
1490 |
+
"[98Mo]": 1335,
|
1491 |
+
"[183Re]": 1336,
|
1492 |
+
"[52V]": 1337,
|
1493 |
+
"[80Se]": 1338,
|
1494 |
+
"[87Kr]": 1339,
|
1495 |
+
"[137Xe]": 1340,
|
1496 |
+
"[196Au]": 1341,
|
1497 |
+
"[146Ce]": 1342,
|
1498 |
+
"[88Kr]": 1343,
|
1499 |
+
"[51Ti]": 1344,
|
1500 |
+
"[138Xe]": 1345,
|
1501 |
+
"[112Cd]": 1346,
|
1502 |
+
"[116Sn]": 1347,
|
1503 |
+
"[120Sn]": 1348,
|
1504 |
+
"[28SiH3]": 1349,
|
1505 |
+
"[35S-]": 1350,
|
1506 |
+
"[15NH-]": 1351,
|
1507 |
+
"[13CH3+]": 1352,
|
1508 |
+
"[34S+]": 1353,
|
1509 |
+
"[34s]": 1354,
|
1510 |
+
"[SiH4-]": 1355,
|
1511 |
+
"[100Tc+5]": 1356,
|
1512 |
+
"[NiH2+2]": 1357,
|
1513 |
+
"[239Th]": 1358,
|
1514 |
+
"[186Lu]": 1359,
|
1515 |
+
"[AuH3]": 1360,
|
1516 |
+
"[I@@-]": 1361,
|
1517 |
+
"[XeH2]": 1362,
|
1518 |
+
"[B+]": 1363,
|
1519 |
+
"[16CH2]": 1364,
|
1520 |
+
"[8C]": 1365,
|
1521 |
+
"[TaH5]": 1366,
|
1522 |
+
"[FeH4-]": 1367,
|
1523 |
+
"[19C@H]": 1368,
|
1524 |
+
"[10NH]": 1369,
|
1525 |
+
"[FeH6-3]": 1370,
|
1526 |
+
"[22CH]": 1371,
|
1527 |
+
"[25N]": 1372,
|
1528 |
+
"[25N+]": 1373,
|
1529 |
+
"[25N-]": 1374,
|
1530 |
+
"[21CH2]": 1375,
|
1531 |
+
"[18cH]": 1376,
|
1532 |
+
"[113I]": 1377,
|
1533 |
+
"[ScH3]": 1378,
|
1534 |
+
"[30PH3]": 1379,
|
1535 |
+
"[43Ca+2]": 1380,
|
1536 |
+
"[41Ca+2]": 1381,
|
1537 |
+
"[106Cd]": 1382,
|
1538 |
+
"[122Sn]": 1383,
|
1539 |
+
"[18CH3]": 1384,
|
1540 |
+
"[58Co+3]": 1385,
|
1541 |
+
"[98Tc+4]": 1386,
|
1542 |
+
"[70Ge]": 1387,
|
1543 |
+
"[76Ge]": 1388,
|
1544 |
+
"[108Cd]": 1389,
|
1545 |
+
"[116Cd]": 1390,
|
1546 |
+
"[130Xe]": 1391,
|
1547 |
+
"[94Mo]": 1392,
|
1548 |
+
"[124Sn]": 1393,
|
1549 |
+
"[186Os]": 1394,
|
1550 |
+
"[188Os]": 1395,
|
1551 |
+
"[190Os]": 1396,
|
1552 |
+
"[192Os]": 1397,
|
1553 |
+
"[106Pd]": 1398,
|
1554 |
+
"[110Pd]": 1399,
|
1555 |
+
"[120Te]": 1400,
|
1556 |
+
"[132Ba]": 1401,
|
1557 |
+
"[134Ba]": 1402,
|
1558 |
+
"[136Ba]": 1403,
|
1559 |
+
"[136Ce]": 1404,
|
1560 |
+
"[138Ce]": 1405,
|
1561 |
+
"[156Dy]": 1406,
|
1562 |
+
"[158Dy]": 1407,
|
1563 |
+
"[160Dy]": 1408,
|
1564 |
+
"[163Dy]": 1409,
|
1565 |
+
"[162Er]": 1410,
|
1566 |
+
"[164Er]": 1411,
|
1567 |
+
"[167Er]": 1412,
|
1568 |
+
"[176Hf]": 1413,
|
1569 |
+
"[26Mg]": 1414,
|
1570 |
+
"[144Nd]": 1415,
|
1571 |
+
"[150Nd]": 1416,
|
1572 |
+
"[41K]": 1417,
|
1573 |
+
"[46Ti]": 1418,
|
1574 |
+
"[48Ti]": 1419,
|
1575 |
+
"[49Ti]": 1420,
|
1576 |
+
"[50Ti]": 1421,
|
1577 |
+
"[170Yb]": 1422,
|
1578 |
+
"[173Yb]": 1423,
|
1579 |
+
"[91Zr]": 1424,
|
1580 |
+
"[92Zr]": 1425,
|
1581 |
+
"[96Zr]": 1426,
|
1582 |
+
"[34S-]": 1427,
|
1583 |
+
"[CuH2-]": 1428,
|
1584 |
+
"[38Cl]": 1429,
|
1585 |
+
"[25Mg]": 1430,
|
1586 |
+
"[51V]": 1431,
|
1587 |
+
"[93Nb]": 1432,
|
1588 |
+
"[95Mo]": 1433,
|
1589 |
+
"[45Sc]": 1434,
|
1590 |
+
"[123Sb]": 1435,
|
1591 |
+
"[139La]": 1436,
|
1592 |
+
"[9Be]": 1437,
|
1593 |
+
"[99Y+3]": 1438,
|
1594 |
+
"[99Y]": 1439,
|
1595 |
+
"[156Ho]": 1440,
|
1596 |
+
"[67Zn]": 1441,
|
1597 |
+
"[144Ce+4]": 1442,
|
1598 |
+
"[210Tl]": 1443,
|
1599 |
+
"[42Ca]": 1444,
|
1600 |
+
"[54Fe]": 1445,
|
1601 |
+
"[193Ir]": 1446,
|
1602 |
+
"[92Nb]": 1447,
|
1603 |
+
"[141Cs]": 1448,
|
1604 |
+
"[52Cr]": 1449,
|
1605 |
+
"[35ClH]": 1450,
|
1606 |
+
"[46Ca]": 1451,
|
1607 |
+
"[139Cs]": 1452,
|
1608 |
+
"[65Cu]": 1453,
|
1609 |
+
"[71Ga]": 1454,
|
1610 |
+
"[60Ni]": 1455,
|
1611 |
+
"[16NH3]": 1456,
|
1612 |
+
"[148Nd]": 1457,
|
1613 |
+
"[72Ge]": 1458,
|
1614 |
+
"[161Dy]": 1459,
|
1615 |
+
"[49Ca]": 1460,
|
1616 |
+
"[43Ca]": 1461,
|
1617 |
+
"[8Be]": 1462,
|
1618 |
+
"[48Ca]": 1463,
|
1619 |
+
"[44Ca]": 1464,
|
1620 |
+
"[120Xe]": 1465,
|
1621 |
+
"[80Rb]": 1466,
|
1622 |
+
"[215At]": 1467,
|
1623 |
+
"[180Re]": 1468,
|
1624 |
+
"[146Sm]": 1469,
|
1625 |
+
"[19Ne]": 1470,
|
1626 |
+
"[74Kr]": 1471,
|
1627 |
+
"[134La]": 1472,
|
1628 |
+
"[76Kr]": 1473,
|
1629 |
+
"[219Fr]": 1474,
|
1630 |
+
"[121Xe]": 1475,
|
1631 |
+
"[220Fr]": 1476,
|
1632 |
+
"[216At]": 1477,
|
1633 |
+
"[223Ac]": 1478,
|
1634 |
+
"[218At]": 1479,
|
1635 |
+
"[37Ar]": 1480,
|
1636 |
+
"[135I]": 1481,
|
1637 |
+
"[110Cd]": 1482,
|
1638 |
+
"[94Tc+7]": 1483,
|
1639 |
+
"[86Y+3]": 1484,
|
1640 |
+
"[135I-]": 1485,
|
1641 |
+
"[15O-2]": 1486,
|
1642 |
+
"[151Eu+3]": 1487,
|
1643 |
+
"[161Tb+3]": 1488,
|
1644 |
+
"[197Hg+2]": 1489,
|
1645 |
+
"[109Cd+2]": 1490,
|
1646 |
+
"[191Os+4]": 1491,
|
1647 |
+
"[170Tm+3]": 1492,
|
1648 |
+
"[205Bi+3]": 1493,
|
1649 |
+
"[233U+4]": 1494,
|
1650 |
+
"[126Sb+3]": 1495,
|
1651 |
+
"[127Sb+3]": 1496,
|
1652 |
+
"[132Cs+]": 1497,
|
1653 |
+
"[136Eu+3]": 1498,
|
1654 |
+
"[136Eu]": 1499,
|
1655 |
+
"[125Sn+4]": 1500,
|
1656 |
+
"[175Yb+3]": 1501,
|
1657 |
+
"[100Mo]": 1502,
|
1658 |
+
"[22Ne]": 1503,
|
1659 |
+
"[13c-]": 1504,
|
1660 |
+
"[13NH4+]": 1505,
|
1661 |
+
"[17C]": 1506,
|
1662 |
+
"[9C]": 1507,
|
1663 |
+
"[31S]": 1508,
|
1664 |
+
"[31SH]": 1509,
|
1665 |
+
"[133I]": 1510,
|
1666 |
+
"[126I]": 1511,
|
1667 |
+
"[36SH]": 1512,
|
1668 |
+
"[30S]": 1513,
|
1669 |
+
"[32SH]": 1514,
|
1670 |
+
"[19CH2]": 1515,
|
1671 |
+
"[19c]": 1516,
|
1672 |
+
"[18c]": 1517,
|
1673 |
+
"[15F]": 1518,
|
1674 |
+
"[10C]": 1519,
|
1675 |
+
"[RuH-]": 1520,
|
1676 |
+
"[62Zn+2]": 1521,
|
1677 |
+
"[32ClH]": 1522,
|
1678 |
+
"[33ClH]": 1523,
|
1679 |
+
"[78BrH]": 1524,
|
1680 |
+
"[12Li+]": 1525,
|
1681 |
+
"[12Li]": 1526,
|
1682 |
+
"[233Ra]": 1527,
|
1683 |
+
"[68Ge+4]": 1528,
|
1684 |
+
"[44Sc+3]": 1529,
|
1685 |
+
"[91Y+3]": 1530,
|
1686 |
+
"[106Ru+3]": 1531,
|
1687 |
+
"[PoH2]": 1532,
|
1688 |
+
"[AtH]": 1533,
|
1689 |
+
"[55Fe]": 1534,
|
1690 |
+
"[233U]": 1535,
|
1691 |
+
"[210PoH2]": 1536,
|
1692 |
+
"[230Th]": 1537,
|
1693 |
+
"[228Th]": 1538,
|
1694 |
+
"[222Rn]": 1539,
|
1695 |
+
"[35SH2]": 1540,
|
1696 |
+
"[227Th]": 1541,
|
1697 |
+
"[192Ir]": 1542,
|
1698 |
+
"[133Xe]": 1543,
|
1699 |
+
"[81Kr]": 1544,
|
1700 |
+
"[95Zr]": 1545,
|
1701 |
+
"[240Pu]": 1546,
|
1702 |
+
"[54Mn]": 1547,
|
1703 |
+
"[103Ru]": 1548,
|
1704 |
+
"[95Nb]": 1549,
|
1705 |
+
"[109Cd]": 1550,
|
1706 |
+
"[141Ce]": 1551,
|
1707 |
+
"[85Kr]": 1552,
|
1708 |
+
"[110Ag]": 1553,
|
1709 |
+
"[58Co]": 1554,
|
1710 |
+
"[241Pu]": 1555,
|
1711 |
+
"[234Th]": 1556,
|
1712 |
+
"[140La]": 1557,
|
1713 |
+
"[63Ni]": 1558,
|
1714 |
+
"[152Eu]": 1559,
|
1715 |
+
"[132IH]": 1560,
|
1716 |
+
"[226Rn]": 1561,
|
1717 |
+
"[154Eu]": 1562,
|
1718 |
+
"[36ClH]": 1563,
|
1719 |
+
"[228Ac]": 1564,
|
1720 |
+
"[155Eu]": 1565,
|
1721 |
+
"[106Rh]": 1566,
|
1722 |
+
"[243Am]": 1567,
|
1723 |
+
"[227Ac]": 1568,
|
1724 |
+
"[243Cm]": 1569,
|
1725 |
+
"[236U]": 1570,
|
1726 |
+
"[144Pr]": 1571,
|
1727 |
+
"[232U]": 1572,
|
1728 |
+
"[32SH2]": 1573,
|
1729 |
+
"[88Y]": 1574,
|
1730 |
+
"[82BrH]": 1575,
|
1731 |
+
"[135IH]": 1576,
|
1732 |
+
"[242Cm]": 1577,
|
1733 |
+
"[115Cd]": 1578,
|
1734 |
+
"[242Pu]": 1579,
|
1735 |
+
"[46Sc]": 1580,
|
1736 |
+
"[56Mn]": 1581,
|
1737 |
+
"[234Pa]": 1582,
|
1738 |
+
"[41Ar]": 1583,
|
1739 |
+
"[147Nd]": 1584,
|
1740 |
+
"[187W]": 1585,
|
1741 |
+
"[151Sm]": 1586,
|
1742 |
+
"[59Ni]": 1587,
|
1743 |
+
"[233Pa]": 1588,
|
1744 |
+
"[52Mn]": 1589,
|
1745 |
+
"[94Nb]": 1590,
|
1746 |
+
"[219Rn]": 1591,
|
1747 |
+
"[236Pu]": 1592,
|
1748 |
+
"[13NH3]": 1593,
|
1749 |
+
"[93Zr]": 1594,
|
1750 |
+
"[51Cr+6]": 1595,
|
1751 |
+
"[TlH3]": 1596,
|
1752 |
+
"[123Xe]": 1597,
|
1753 |
+
"[160Tb]": 1598,
|
1754 |
+
"[170Tm]": 1599,
|
1755 |
+
"[182Ta]": 1600,
|
1756 |
+
"[175Yb]": 1601,
|
1757 |
+
"[93Mo]": 1602,
|
1758 |
+
"[143Ce]": 1603,
|
1759 |
+
"[191Os]": 1604,
|
1760 |
+
"[126IH]": 1605,
|
1761 |
+
"[48V]": 1606,
|
1762 |
+
"[113Cd]": 1607,
|
1763 |
+
"[47Sc]": 1608,
|
1764 |
+
"[181Hf]": 1609,
|
1765 |
+
"[185W]": 1610,
|
1766 |
+
"[143Pr]": 1611,
|
1767 |
+
"[191Pt]": 1612,
|
1768 |
+
"[181W]": 1613,
|
1769 |
+
"[33PH3]": 1614,
|
1770 |
+
"[97Ru]": 1615,
|
1771 |
+
"[97Tc]": 1616,
|
1772 |
+
"[111Ag]": 1617,
|
1773 |
+
"[169Er]": 1618,
|
1774 |
+
"[107Pd]": 1619,
|
1775 |
+
"[103Ru+2]": 1620,
|
1776 |
+
"[34SH2]": 1621,
|
1777 |
+
"[137Ce]": 1622,
|
1778 |
+
"[242Am]": 1623,
|
1779 |
+
"[117SnH2]": 1624,
|
1780 |
+
"[57Ni]": 1625,
|
1781 |
+
"[239U]": 1626,
|
1782 |
+
"[60Cu]": 1627,
|
1783 |
+
"[250Cf]": 1628,
|
1784 |
+
"[193Au]": 1629,
|
1785 |
+
"[69Zn]": 1630,
|
1786 |
+
"[55Co]": 1631,
|
1787 |
+
"[139Ce]": 1632,
|
1788 |
+
"[127Xe]": 1633,
|
1789 |
+
"[159Gd]": 1634,
|
1790 |
+
"[56Co]": 1635,
|
1791 |
+
"[177Hf]": 1636,
|
1792 |
+
"[244Pu]": 1637,
|
1793 |
+
"[38ClH]": 1638,
|
1794 |
+
"[142Pr]": 1639,
|
1795 |
+
"[199Hg]": 1640,
|
1796 |
+
"[179Hf]": 1641,
|
1797 |
+
"[178Hf]": 1642,
|
1798 |
+
"[237U]": 1643,
|
1799 |
+
"[156Eu]": 1644,
|
1800 |
+
"[157Eu]": 1645,
|
1801 |
+
"[105Ru]": 1646,
|
1802 |
+
"[171Tm]": 1647,
|
1803 |
+
"[199Au]": 1648,
|
1804 |
+
"[155Sm]": 1649,
|
1805 |
+
"[80BrH]": 1650,
|
1806 |
+
"[108Ag]": 1651,
|
1807 |
+
"[128IH]": 1652,
|
1808 |
+
"[48Sc]": 1653,
|
1809 |
+
"[45Ti]": 1654,
|
1810 |
+
"[176Lu]": 1655,
|
1811 |
+
"[121SnH2]": 1656,
|
1812 |
+
"[148Pm]": 1657,
|
1813 |
+
"[57Fe]": 1658,
|
1814 |
+
"[10BH3]": 1659,
|
1815 |
+
"[96Tc]": 1660,
|
1816 |
+
"[133IH]": 1661,
|
1817 |
+
"[143Pm]": 1662,
|
1818 |
+
"[105Rh]": 1663,
|
1819 |
+
"[130IH]": 1664,
|
1820 |
+
"[134IH]": 1665,
|
1821 |
+
"[131IH]": 1666,
|
1822 |
+
"[71Zn]": 1667,
|
1823 |
+
"[105Ag]": 1668,
|
1824 |
+
"[97Zr]": 1669,
|
1825 |
+
"[235Pu]": 1670,
|
1826 |
+
"[231Th]": 1671,
|
1827 |
+
"[109Pd]": 1672,
|
1828 |
+
"[93Y]": 1673,
|
1829 |
+
"[190Ir]": 1674,
|
1830 |
+
"[135Xe]": 1675,
|
1831 |
+
"[53Mn]": 1676,
|
1832 |
+
"[134Ce]": 1677,
|
1833 |
+
"[234Np]": 1678,
|
1834 |
+
"[240Am]": 1679,
|
1835 |
+
"[246Cf]": 1680,
|
1836 |
+
"[240Cm]": 1681,
|
1837 |
+
"[241Cm]": 1682,
|
1838 |
+
"[226Th]": 1683,
|
1839 |
+
"[39ClH]": 1684,
|
1840 |
+
"[229Th]": 1685,
|
1841 |
+
"[245Cm]": 1686,
|
1842 |
+
"[240U]": 1687,
|
1843 |
+
"[240Np]": 1688,
|
1844 |
+
"[249Cm]": 1689,
|
1845 |
+
"[243Pu]": 1690,
|
1846 |
+
"[145Pm]": 1691,
|
1847 |
+
"[199Pt]": 1692,
|
1848 |
+
"[246Bk]": 1693,
|
1849 |
+
"[193Pt]": 1694,
|
1850 |
+
"[230U]": 1695,
|
1851 |
+
"[250Cm]": 1696,
|
1852 |
+
"[44Ti]": 1697,
|
1853 |
+
"[175Hf]": 1698,
|
1854 |
+
"[254Fm]": 1699,
|
1855 |
+
"[255Fm]": 1700,
|
1856 |
+
"[257Fm]": 1701,
|
1857 |
+
"[92Y]": 1702,
|
1858 |
+
"[188Ir]": 1703,
|
1859 |
+
"[171Lu]": 1704,
|
1860 |
+
"[257Md]": 1705,
|
1861 |
+
"[247Bk]": 1706,
|
1862 |
+
"[121IH]": 1707,
|
1863 |
+
"[250Bk]": 1708,
|
1864 |
+
"[179Lu]": 1709,
|
1865 |
+
"[224Ac]": 1710,
|
1866 |
+
"[195Hg]": 1711,
|
1867 |
+
"[244Am]": 1712,
|
1868 |
+
"[246Pu]": 1713,
|
1869 |
+
"[194Au]": 1714,
|
1870 |
+
"[252Fm]": 1715,
|
1871 |
+
"[173Hf]": 1716,
|
1872 |
+
"[246Cm]": 1717,
|
1873 |
+
"[135Ce]": 1718,
|
1874 |
+
"[49Cr]": 1719,
|
1875 |
+
"[248Cf]": 1720,
|
1876 |
+
"[247Cm]": 1721,
|
1877 |
+
"[248Cm]": 1722,
|
1878 |
+
"[174Ta]": 1723,
|
1879 |
+
"[176Ta]": 1724,
|
1880 |
+
"[154Tb]": 1725,
|
1881 |
+
"[172Ta]": 1726,
|
1882 |
+
"[177Ta]": 1727,
|
1883 |
+
"[175Ta]": 1728,
|
1884 |
+
"[180Ta]": 1729,
|
1885 |
+
"[158Tb]": 1730,
|
1886 |
+
"[115Ag]": 1731,
|
1887 |
+
"[189Os]": 1732,
|
1888 |
+
"[251Cf]": 1733,
|
1889 |
+
"[145Pr]": 1734,
|
1890 |
+
"[147Pr]": 1735,
|
1891 |
+
"[76BrH]": 1736,
|
1892 |
+
"[102Rh]": 1737,
|
1893 |
+
"[238Np]": 1738,
|
1894 |
+
"[185Os]": 1739,
|
1895 |
+
"[246Am]": 1740,
|
1896 |
+
"[233Np]": 1741,
|
1897 |
+
"[166Dy]": 1742,
|
1898 |
+
"[254Es]": 1743,
|
1899 |
+
"[244Cf]": 1744,
|
1900 |
+
"[193Os]": 1745,
|
1901 |
+
"[245Am]": 1746,
|
1902 |
+
"[245Bk]": 1747,
|
1903 |
+
"[239Am]": 1748,
|
1904 |
+
"[238Am]": 1749,
|
1905 |
+
"[97Nb]": 1750,
|
1906 |
+
"[245Pu]": 1751,
|
1907 |
+
"[254Cf]": 1752,
|
1908 |
+
"[188W]": 1753,
|
1909 |
+
"[250Es]": 1754,
|
1910 |
+
"[251Es]": 1755,
|
1911 |
+
"[237Am]": 1756,
|
1912 |
+
"[182Hf]": 1757,
|
1913 |
+
"[258Md]": 1758,
|
1914 |
+
"[232Np]": 1759,
|
1915 |
+
"[238Cm]": 1760,
|
1916 |
+
"[60Fe]": 1761,
|
1917 |
+
"[109Pd+2]": 1762,
|
1918 |
+
"[234Pu]": 1763,
|
1919 |
+
"[141Ce+3]": 1764,
|
1920 |
+
"[136Nd]": 1765,
|
1921 |
+
"[136Pr]": 1766,
|
1922 |
+
"[173Ta]": 1767,
|
1923 |
+
"[110Ru]": 1768,
|
1924 |
+
"[147Tb]": 1769,
|
1925 |
+
"[253Fm]": 1770,
|
1926 |
+
"[139Nd]": 1771,
|
1927 |
+
"[178Re]": 1772,
|
1928 |
+
"[177Re]": 1773,
|
1929 |
+
"[200Au]": 1774,
|
1930 |
+
"[182Re]": 1775,
|
1931 |
+
"[156Tb]": 1776,
|
1932 |
+
"[155Tb]": 1777,
|
1933 |
+
"[157Tb]": 1778,
|
1934 |
+
"[161Tb]": 1779,
|
1935 |
+
"[161Ho]": 1780,
|
1936 |
+
"[167Tm]": 1781,
|
1937 |
+
"[173Lu]": 1782,
|
1938 |
+
"[179Ta]": 1783,
|
1939 |
+
"[171Er]": 1784,
|
1940 |
+
"[44Sc]": 1785,
|
1941 |
+
"[49Sc]": 1786,
|
1942 |
+
"[49V]": 1787,
|
1943 |
+
"[51Mn]": 1788,
|
1944 |
+
"[90Nb]": 1789,
|
1945 |
+
"[88Nb]": 1790,
|
1946 |
+
"[88Zr]": 1791,
|
1947 |
+
"[36SH2]": 1792,
|
1948 |
+
"[174Yb]": 1793,
|
1949 |
+
"[178Lu]": 1794,
|
1950 |
+
"[179W]": 1795,
|
1951 |
+
"[83BrH]": 1796,
|
1952 |
+
"[107Cd]": 1797,
|
1953 |
+
"[75BrH]": 1798,
|
1954 |
+
"[62Co]": 1799,
|
1955 |
+
"[48Cr]": 1800,
|
1956 |
+
"[63Zn]": 1801,
|
1957 |
+
"[102Ag]": 1802,
|
1958 |
+
"[154Sm]": 1803,
|
1959 |
+
"[168Er]": 1804,
|
1960 |
+
"[65Ni]": 1805,
|
1961 |
+
"[137La]": 1806,
|
1962 |
+
"[187Ir]": 1807,
|
1963 |
+
"[144Pm]": 1808,
|
1964 |
+
"[146Pm]": 1809,
|
1965 |
+
"[160Gd]": 1810,
|
1966 |
+
"[166Yb]": 1811,
|
1967 |
+
"[162Dy]": 1812,
|
1968 |
+
"[47V]": 1813,
|
1969 |
+
"[141Nd]": 1814,
|
1970 |
+
"[141Sm]": 1815,
|
1971 |
+
"[166Er]": 1816,
|
1972 |
+
"[150Sm]": 1817,
|
1973 |
+
"[146Eu]": 1818,
|
1974 |
+
"[149Eu]": 1819,
|
1975 |
+
"[174Lu]": 1820,
|
1976 |
+
"[17NH3]": 1821,
|
1977 |
+
"[102Ru]": 1822,
|
1978 |
+
"[170Hf]": 1823,
|
1979 |
+
"[188Pt]": 1824,
|
1980 |
+
"[61Ni]": 1825,
|
1981 |
+
"[56Ni]": 1826,
|
1982 |
+
"[149Gd]": 1827,
|
1983 |
+
"[151Gd]": 1828,
|
1984 |
+
"[141Pm]": 1829,
|
1985 |
+
"[147Gd]": 1830,
|
1986 |
+
"[146Gd]": 1831,
|
1987 |
+
"[161Er]": 1832,
|
1988 |
+
"[103Ag]": 1833,
|
1989 |
+
"[145Eu]": 1834,
|
1990 |
+
"[153Tb]": 1835,
|
1991 |
+
"[155Dy]": 1836,
|
1992 |
+
"[184Re]": 1837,
|
1993 |
+
"[180Os]": 1838,
|
1994 |
+
"[182Os]": 1839,
|
1995 |
+
"[186Pt]": 1840,
|
1996 |
+
"[181Os]": 1841,
|
1997 |
+
"[181Re]": 1842,
|
1998 |
+
"[151Tb]": 1843,
|
1999 |
+
"[178Ta]": 1844,
|
2000 |
+
"[178W]": 1845,
|
2001 |
+
"[189Pt]": 1846,
|
2002 |
+
"[194Hg]": 1847,
|
2003 |
+
"[145Sm]": 1848,
|
2004 |
+
"[150Tb]": 1849,
|
2005 |
+
"[132La]": 1850,
|
2006 |
+
"[158Gd]": 1851,
|
2007 |
+
"[104Ag]": 1852,
|
2008 |
+
"[193Hg]": 1853,
|
2009 |
+
"[94Ru]": 1854,
|
2010 |
+
"[137Pr]": 1855,
|
2011 |
+
"[155Ho]": 1856,
|
2012 |
+
"[117Cd]": 1857,
|
2013 |
+
"[99Ru]": 1858,
|
2014 |
+
"[146Nd]": 1859,
|
2015 |
+
"[218Rn]": 1860,
|
2016 |
+
"[95Y]": 1861,
|
2017 |
+
"[79Kr]": 1862,
|
2018 |
+
"[120IH]": 1863,
|
2019 |
+
"[138Pr]": 1864,
|
2020 |
+
"[100Pd]": 1865,
|
2021 |
+
"[166Tm]": 1866,
|
2022 |
+
"[90Mo]": 1867,
|
2023 |
+
"[151Nd]": 1868,
|
2024 |
+
"[231U]": 1869,
|
2025 |
+
"[138Nd]": 1870,
|
2026 |
+
"[89Nb]": 1871,
|
2027 |
+
"[98Nb]": 1872,
|
2028 |
+
"[162Ho]": 1873,
|
2029 |
+
"[142Sm]": 1874,
|
2030 |
+
"[186Ta]": 1875,
|
2031 |
+
"[104Tc]": 1876,
|
2032 |
+
"[184Ta]": 1877,
|
2033 |
+
"[185Ta]": 1878,
|
2034 |
+
"[170Er]": 1879,
|
2035 |
+
"[107Rh]": 1880,
|
2036 |
+
"[131La]": 1881,
|
2037 |
+
"[169Lu]": 1882,
|
2038 |
+
"[74BrH]": 1883,
|
2039 |
+
"[150Pm]": 1884,
|
2040 |
+
"[172Tm]": 1885,
|
2041 |
+
"[197Pt]": 1886,
|
2042 |
+
"[230Pu]": 1887,
|
2043 |
+
"[170Lu]": 1888,
|
2044 |
+
"[86Zr]": 1889,
|
2045 |
+
"[176W]": 1890,
|
2046 |
+
"[177W]": 1891,
|
2047 |
+
"[101Pd]": 1892,
|
2048 |
+
"[105Pd]": 1893,
|
2049 |
+
"[108Pd]": 1894,
|
2050 |
+
"[149Nd]": 1895,
|
2051 |
+
"[164Ho]": 1896,
|
2052 |
+
"[159Ho]": 1897,
|
2053 |
+
"[167Ho]": 1898,
|
2054 |
+
"[176Yb]": 1899,
|
2055 |
+
"[156Sm]": 1900,
|
2056 |
+
"[77BrH]": 1901,
|
2057 |
+
"[189Re]": 1902,
|
2058 |
+
"[99Rh]": 1903,
|
2059 |
+
"[100Rh]": 1904,
|
2060 |
+
"[151Pm]": 1905,
|
2061 |
+
"[232Pa]": 1906,
|
2062 |
+
"[228Pa]": 1907,
|
2063 |
+
"[230Pa]": 1908,
|
2064 |
+
"[66Ni]": 1909,
|
2065 |
+
"[194Os]": 1910,
|
2066 |
+
"[135La]": 1911,
|
2067 |
+
"[138La]": 1912,
|
2068 |
+
"[141La]": 1913,
|
2069 |
+
"[142La]": 1914,
|
2070 |
+
"[195Ir]": 1915,
|
2071 |
+
"[96Nb]": 1916,
|
2072 |
+
"[157Ho]": 1917,
|
2073 |
+
"[183Hf]": 1918,
|
2074 |
+
"[162Tm]": 1919,
|
2075 |
+
"[172Er]": 1920,
|
2076 |
+
"[148Eu]": 1921,
|
2077 |
+
"[150Eu]": 1922,
|
2078 |
+
"[15CH4]": 1923,
|
2079 |
+
"[89Kr]": 1924,
|
2080 |
+
"[143La]": 1925,
|
2081 |
+
"[58Ni]": 1926,
|
2082 |
+
"[61Co]": 1927,
|
2083 |
+
"[158Eu]": 1928,
|
2084 |
+
"[165Er]": 1929,
|
2085 |
+
"[167Yb]": 1930,
|
2086 |
+
"[173Tm]": 1931,
|
2087 |
+
"[175Tm]": 1932,
|
2088 |
+
"[172Hf]": 1933,
|
2089 |
+
"[172Lu]": 1934,
|
2090 |
+
"[93Tc]": 1935,
|
2091 |
+
"[177Yb]": 1936,
|
2092 |
+
"[124IH]": 1937,
|
2093 |
+
"[194Ir]": 1938,
|
2094 |
+
"[147Eu]": 1939,
|
2095 |
+
"[101Mo]": 1940,
|
2096 |
+
"[180Hf]": 1941,
|
2097 |
+
"[189Ir]": 1942,
|
2098 |
+
"[87Y]": 1943,
|
2099 |
+
"[43Sc]": 1944,
|
2100 |
+
"[195Au]": 1945,
|
2101 |
+
"[112Ag]": 1946,
|
2102 |
+
"[84BrH]": 1947,
|
2103 |
+
"[106Ag]": 1948,
|
2104 |
+
"[109Ag]": 1949,
|
2105 |
+
"[101Rh]": 1950,
|
2106 |
+
"[162Yb]": 1951,
|
2107 |
+
"[228Rn]": 1952,
|
2108 |
+
"[139Pr]": 1953,
|
2109 |
+
"[94Y]": 1954,
|
2110 |
+
"[201Au]": 1955,
|
2111 |
+
"[40PH3]": 1956,
|
2112 |
+
"[110Ag+]": 1957,
|
2113 |
+
"[104Cd]": 1958,
|
2114 |
+
"[133Ba+2]": 1959,
|
2115 |
+
"[226Ac]": 1960,
|
2116 |
+
"[145Gd]": 1961,
|
2117 |
+
"[186Ir]": 1962,
|
2118 |
+
"[184Ir]": 1963,
|
2119 |
+
"[224Rn]": 1964,
|
2120 |
+
"[185Ir]": 1965,
|
2121 |
+
"[182Ir]": 1966,
|
2122 |
+
"[184Hf]": 1967,
|
2123 |
+
"[200Pt]": 1968,
|
2124 |
+
"[227Pa]": 1969,
|
2125 |
+
"[178Yb]": 1970,
|
2126 |
+
"[72Br-]": 1971,
|
2127 |
+
"[72BrH]": 1972,
|
2128 |
+
"[248Am]": 1973,
|
2129 |
+
"[238Th]": 1974,
|
2130 |
+
"[161Gd]": 1975,
|
2131 |
+
"[35S-2]": 1976,
|
2132 |
+
"[107Ag]": 1977,
|
2133 |
+
"[FeH6-4]": 1978,
|
2134 |
+
"[89Sr]": 1979,
|
2135 |
+
"[SnH3-]": 1980,
|
2136 |
+
"[SeH3]": 1981,
|
2137 |
+
"[TeH3+]": 1982,
|
2138 |
+
"[SbH4+]": 1983,
|
2139 |
+
"[AsH4+]": 1984,
|
2140 |
+
"[4He]": 1985,
|
2141 |
+
"[AsH3-]": 1986,
|
2142 |
+
"[1HH]": 1987,
|
2143 |
+
"[3H+]": 1988,
|
2144 |
+
"[82Rb]": 1989,
|
2145 |
+
"[85Sr]": 1990,
|
2146 |
+
"[90Sr]": 1991,
|
2147 |
+
"[137Cs]": 1992,
|
2148 |
+
"[133Ba]": 1993,
|
2149 |
+
"[131Cs]": 1994,
|
2150 |
+
"[SbH5]": 1995,
|
2151 |
+
"[224Ra]": 1996,
|
2152 |
+
"[22Na]": 1997,
|
2153 |
+
"[210Bi]": 1998,
|
2154 |
+
"[214Bi]": 1999,
|
2155 |
+
"[228Ra]": 2000,
|
2156 |
+
"[127Sb]": 2001,
|
2157 |
+
"[136Cs]": 2002,
|
2158 |
+
"[125Sb]": 2003,
|
2159 |
+
"[134Cs]": 2004,
|
2160 |
+
"[140Ba]": 2005,
|
2161 |
+
"[45Ca]": 2006,
|
2162 |
+
"[206Pb]": 2007,
|
2163 |
+
"[207Pb]": 2008,
|
2164 |
+
"[24Na]": 2009,
|
2165 |
+
"[86Rb]": 2010,
|
2166 |
+
"[212Bi]": 2011,
|
2167 |
+
"[208Pb]": 2012,
|
2168 |
+
"[124Sb]": 2013,
|
2169 |
+
"[204Pb]": 2014,
|
2170 |
+
"[44K]": 2015,
|
2171 |
+
"[129Te]": 2016,
|
2172 |
+
"[113Sn]": 2017,
|
2173 |
+
"[204Tl]": 2018,
|
2174 |
+
"[87Sr]": 2019,
|
2175 |
+
"[208Tl]": 2020,
|
2176 |
+
"[87Rb]": 2021,
|
2177 |
+
"[47Ca]": 2022,
|
2178 |
+
"[135Cs]": 2023,
|
2179 |
+
"[216Po]": 2024,
|
2180 |
+
"[137Ba]": 2025,
|
2181 |
+
"[207Bi]": 2026,
|
2182 |
+
"[212Po]": 2027,
|
2183 |
+
"[79Se]": 2028,
|
2184 |
+
"[223Ra]": 2029,
|
2185 |
+
"[86Sr]": 2030,
|
2186 |
+
"[122Sb]": 2031,
|
2187 |
+
"[26Al]": 2032,
|
2188 |
+
"[32Si]": 2033,
|
2189 |
+
"[126Sn]": 2034,
|
2190 |
+
"[225Ra]": 2035,
|
2191 |
+
"[114In]": 2036,
|
2192 |
+
"[72Ga]": 2037,
|
2193 |
+
"[132Te]": 2038,
|
2194 |
+
"[10Be]": 2039,
|
2195 |
+
"[125Sn]": 2040,
|
2196 |
+
"[73As]": 2041,
|
2197 |
+
"[206Bi]": 2042,
|
2198 |
+
"[117Sn]": 2043,
|
2199 |
+
"[40Ca]": 2044,
|
2200 |
+
"[41Ca]": 2045,
|
2201 |
+
"[89Rb]": 2046,
|
2202 |
+
"[116In]": 2047,
|
2203 |
+
"[129Sb]": 2048,
|
2204 |
+
"[91Sr]": 2049,
|
2205 |
+
"[71Ge]": 2050,
|
2206 |
+
"[139Ba]": 2051,
|
2207 |
+
"[69Ga]": 2052,
|
2208 |
+
"[120Sb]": 2053,
|
2209 |
+
"[121Sn]": 2054,
|
2210 |
+
"[123Sn]": 2055,
|
2211 |
+
"[131Te]": 2056,
|
2212 |
+
"[77Ge]": 2057,
|
2213 |
+
"[135Ba]": 2058,
|
2214 |
+
"[82Sr]": 2059,
|
2215 |
+
"[43K]": 2060,
|
2216 |
+
"[131Ba]": 2061,
|
2217 |
+
"[92Sr]": 2062,
|
2218 |
+
"[88Rb]": 2063,
|
2219 |
+
"[129Cs]": 2064,
|
2220 |
+
"[144Cs]": 2065,
|
2221 |
+
"[127Cs]": 2066,
|
2222 |
+
"[200Tl]": 2067,
|
2223 |
+
"[202Tl]": 2068,
|
2224 |
+
"[141Ba]": 2069,
|
2225 |
+
"[117Sb]": 2070,
|
2226 |
+
"[116Sb]": 2071,
|
2227 |
+
"[78As]": 2072,
|
2228 |
+
"[131Sb]": 2073,
|
2229 |
+
"[126Sb]": 2074,
|
2230 |
+
"[128Sb]": 2075,
|
2231 |
+
"[130Sb]": 2076,
|
2232 |
+
"[67Ge]": 2077,
|
2233 |
+
"[68Ge]": 2078,
|
2234 |
+
"[78Ge]": 2079,
|
2235 |
+
"[66Ge]": 2080,
|
2236 |
+
"[223Fr]": 2081,
|
2237 |
+
"[132Cs]": 2082,
|
2238 |
+
"[125Cs]": 2083,
|
2239 |
+
"[138Cs]": 2084,
|
2240 |
+
"[133Te]": 2085,
|
2241 |
+
"[84Rb]": 2086,
|
2242 |
+
"[83Rb]": 2087,
|
2243 |
+
"[81Rb]": 2088,
|
2244 |
+
"[142Ba]": 2089,
|
2245 |
+
"[200Bi]": 2090,
|
2246 |
+
"[115Sb]": 2091,
|
2247 |
+
"[194Tl]": 2092,
|
2248 |
+
"[70Se]": 2093,
|
2249 |
+
"[112In]": 2094,
|
2250 |
+
"[118Sb]": 2095,
|
2251 |
+
"[70Ga]": 2096,
|
2252 |
+
"[27Mg]": 2097,
|
2253 |
+
"[202Bi]": 2098,
|
2254 |
+
"[83Se]": 2099,
|
2255 |
+
"[9Li]": 2100,
|
2256 |
+
"[69As]": 2101,
|
2257 |
+
"[79Rb]": 2102,
|
2258 |
+
"[81Sr]": 2103,
|
2259 |
+
"[83Sr]": 2104,
|
2260 |
+
"[78Se]": 2105,
|
2261 |
+
"[109In]": 2106,
|
2262 |
+
"[29Al]": 2107,
|
2263 |
+
"[118Sn]": 2108,
|
2264 |
+
"[117In]": 2109,
|
2265 |
+
"[119Sb]": 2110,
|
2266 |
+
"[114Sn]": 2111,
|
2267 |
+
"[138Ba]": 2112,
|
2268 |
+
"[69Ge]": 2113,
|
2269 |
+
"[73Ga]": 2114,
|
2270 |
+
"[74Ge]": 2115,
|
2271 |
+
"[206Tl]": 2116,
|
2272 |
+
"[199Tl]": 2117,
|
2273 |
+
"[130Cs]": 2118,
|
2274 |
+
"[28Mg]": 2119,
|
2275 |
+
"[116Te]": 2120,
|
2276 |
+
"[112Sn]": 2121,
|
2277 |
+
"[126Ba]": 2122,
|
2278 |
+
"[211Bi]": 2123,
|
2279 |
+
"[81Se]": 2124,
|
2280 |
+
"[127Sn]": 2125,
|
2281 |
+
"[143Cs]": 2126,
|
2282 |
+
"[134Te]": 2127,
|
2283 |
+
"[80Sr]": 2128,
|
2284 |
+
"[45K]": 2129,
|
2285 |
+
"[215Po]": 2130,
|
2286 |
+
"[207Po]": 2131,
|
2287 |
+
"[111Sn]": 2132,
|
2288 |
+
"[211Po]": 2133,
|
2289 |
+
"[128Ba]": 2134,
|
2290 |
+
"[198Tl]": 2135,
|
2291 |
+
"[227Ra]": 2136,
|
2292 |
+
"[213Po]": 2137,
|
2293 |
+
"[220Ra]": 2138,
|
2294 |
+
"[128Sn]": 2139,
|
2295 |
+
"[203Po]": 2140,
|
2296 |
+
"[205Po]": 2141,
|
2297 |
+
"[65Ga]": 2142,
|
2298 |
+
"[197Tl]": 2143,
|
2299 |
+
"[88Sr]": 2144,
|
2300 |
+
"[110In]": 2145,
|
2301 |
+
"[31Si]": 2146,
|
2302 |
+
"[201Bi]": 2147,
|
2303 |
+
"[121Te]": 2148,
|
2304 |
+
"[205Bi]": 2149,
|
2305 |
+
"[203Bi]": 2150,
|
2306 |
+
"[195Tl]": 2151,
|
2307 |
+
"[209Tl]": 2152,
|
2308 |
+
"[110Sn]": 2153,
|
2309 |
+
"[222Fr]": 2154,
|
2310 |
+
"[207At]": 2155,
|
2311 |
+
"[119In]": 2156,
|
2312 |
+
"[As@]": 2157,
|
2313 |
+
"[129IH]": 2158,
|
2314 |
+
"[157Dy]": 2159,
|
2315 |
+
"[111IH]": 2160,
|
2316 |
+
"[230Ra]": 2161,
|
2317 |
+
"[144Pr+3]": 2162,
|
2318 |
+
"[SiH3+]": 2163,
|
2319 |
+
"[3He]": 2164,
|
2320 |
+
"[AsH5]": 2165,
|
2321 |
+
"[72Se]": 2166,
|
2322 |
+
"[95Tc]": 2167,
|
2323 |
+
"[103Pd]": 2168,
|
2324 |
+
"[121Sn+2]": 2169,
|
2325 |
+
"[211Rn]": 2170,
|
2326 |
+
"[38SH2]": 2171,
|
2327 |
+
"[127IH]": 2172,
|
2328 |
+
"[74Br-]": 2173,
|
2329 |
+
"[133I-]": 2174,
|
2330 |
+
"[100Tc+4]": 2175,
|
2331 |
+
"[100Tc]": 2176,
|
2332 |
+
"[36Cl-]": 2177,
|
2333 |
+
"[89Y+3]": 2178,
|
2334 |
+
"[104Rh]": 2179,
|
2335 |
+
"[152Sm]": 2180,
|
2336 |
+
"[226Ra]": 2181,
|
2337 |
+
"[19FH]": 2182,
|
2338 |
+
"[104Pd]": 2183,
|
2339 |
+
"[148Gd]": 2184,
|
2340 |
+
"[157Lu]": 2185,
|
2341 |
+
"[33SH2]": 2186,
|
2342 |
+
"[121I-]": 2187,
|
2343 |
+
"[17FH]": 2188,
|
2344 |
+
"[71Se]": 2189,
|
2345 |
+
"[157Sm]": 2190,
|
2346 |
+
"[148Tb]": 2191,
|
2347 |
+
"[164Dy]": 2192,
|
2348 |
+
"[15OH2]": 2193,
|
2349 |
+
"[15O+]": 2194,
|
2350 |
+
"[39K]": 2195,
|
2351 |
+
"[40Ar]": 2196,
|
2352 |
+
"[50Cr+3]": 2197,
|
2353 |
+
"[50Cr]": 2198,
|
2354 |
+
"[52Ti]": 2199,
|
2355 |
+
"[103Pd+2]": 2200,
|
2356 |
+
"[130Ba]": 2201,
|
2357 |
+
"[142Pm]": 2202,
|
2358 |
+
"[153Gd+3]": 2203,
|
2359 |
+
"[151Eu]": 2204,
|
2360 |
+
"[103Rh]": 2205,
|
2361 |
+
"[124Xe]": 2206,
|
2362 |
+
"[152Tb]": 2207,
|
2363 |
+
"[17OH2]": 2208,
|
2364 |
+
"[20Ne]": 2209,
|
2365 |
+
"[52Fe]": 2210,
|
2366 |
+
"[94Zr+4]": 2211,
|
2367 |
+
"[94Zr]": 2212,
|
2368 |
+
"[149Pr]": 2213,
|
2369 |
+
"[16OH2]": 2214,
|
2370 |
+
"[53Cr+6]": 2215,
|
2371 |
+
"[53Cr]": 2216,
|
2372 |
+
"[81Br-]": 2217,
|
2373 |
+
"[112Pd]": 2218,
|
2374 |
+
"[125Xe]": 2219,
|
2375 |
+
"[155Gd]": 2220,
|
2376 |
+
"[157Gd]": 2221,
|
2377 |
+
"[168Yb]": 2222,
|
2378 |
+
"[184Os]": 2223,
|
2379 |
+
"[166Tb]": 2224,
|
2380 |
+
"[221Fr]": 2225,
|
2381 |
+
"[212Ra]": 2226,
|
2382 |
+
"[75Br-]": 2227,
|
2383 |
+
"[79Br-]": 2228,
|
2384 |
+
"[113Ag]": 2229,
|
2385 |
+
"[23Na]": 2230,
|
2386 |
+
"[34Cl-]": 2231,
|
2387 |
+
"[34ClH]": 2232,
|
2388 |
+
"[38Cl-]": 2233,
|
2389 |
+
"[56Fe]": 2234,
|
2390 |
+
"[68Cu]": 2235,
|
2391 |
+
"[77Br-]": 2236,
|
2392 |
+
"[90Zr+4]": 2237,
|
2393 |
+
"[90Zr]": 2238,
|
2394 |
+
"[102Pd]": 2239,
|
2395 |
+
"[154Eu+3]": 2240,
|
2396 |
+
"[57Mn]": 2241,
|
2397 |
+
"[165Tm]": 2242,
|
2398 |
+
"[152Dy]": 2243,
|
2399 |
+
"[217At]": 2244,
|
2400 |
+
"[77se]": 2245,
|
2401 |
+
"[13cH-]": 2246,
|
2402 |
+
"[122Te]": 2247,
|
2403 |
+
"[156Gd]": 2248,
|
2404 |
+
"[124Te]": 2249,
|
2405 |
+
"[53Ni]": 2250,
|
2406 |
+
"[131Xe]": 2251,
|
2407 |
+
"[174Hf+4]": 2252,
|
2408 |
+
"[174Hf]": 2253,
|
2409 |
+
"[76Se]": 2254,
|
2410 |
+
"[168Tm]": 2255,
|
2411 |
+
"[167Dy]": 2256,
|
2412 |
+
"[154Gd]": 2257,
|
2413 |
+
"[95Ru]": 2258,
|
2414 |
+
"[210At]": 2259,
|
2415 |
+
"[85Br]": 2260,
|
2416 |
+
"[59Co]": 2261,
|
2417 |
+
"[122Xe]": 2262,
|
2418 |
+
"[27Al]": 2263,
|
2419 |
+
"[54Cr]": 2264,
|
2420 |
+
"[198Hg]": 2265,
|
2421 |
+
"[85Rb+]": 2266,
|
2422 |
+
"[214Tl]": 2267,
|
2423 |
+
"[229Rn]": 2268,
|
2424 |
+
"[218Pb]": 2269,
|
2425 |
+
"[218Bi]": 2270,
|
2426 |
+
"[167Tm+3]": 2271,
|
2427 |
+
"[18o+]": 2272,
|
2428 |
+
"[P@@H+]": 2273,
|
2429 |
+
"[P@H+]": 2274,
|
2430 |
+
"[13N+]": 2275,
|
2431 |
+
"[212Pb+2]": 2276,
|
2432 |
+
"[217Bi]": 2277,
|
2433 |
+
"[249Cf+2]": 2278,
|
2434 |
+
"[18OH3+]": 2279,
|
2435 |
+
"[90Sr-]": 2280,
|
2436 |
+
"[Cf+3]": 2281,
|
2437 |
+
"[200Hg]": 2282,
|
2438 |
+
"[86Tc]": 2283,
|
2439 |
+
"[141Pr+3]": 2284,
|
2440 |
+
"[141Pr]": 2285,
|
2441 |
+
"[16nH]": 2286,
|
2442 |
+
"[14NH4+]": 2287,
|
2443 |
+
"[132Xe]": 2288,
|
2444 |
+
"[83Kr]": 2289,
|
2445 |
+
"[70Zn+2]": 2290,
|
2446 |
+
"[137Ba+2]": 2291,
|
2447 |
+
"[36Ar]": 2292,
|
2448 |
+
"[38Ar]": 2293,
|
2449 |
+
"[21Ne]": 2294,
|
2450 |
+
"[126Xe]": 2295,
|
2451 |
+
"[136Xe]": 2296,
|
2452 |
+
"[128Xe]": 2297,
|
2453 |
+
"[134Xe]": 2298,
|
2454 |
+
"[84Kr]": 2299,
|
2455 |
+
"[86Kr]": 2300,
|
2456 |
+
"[78Kr]": 2301,
|
2457 |
+
"[80Kr]": 2302,
|
2458 |
+
"[82Kr]": 2303,
|
2459 |
+
"[67Zn+2]": 2304,
|
2460 |
+
"[65Cu+2]": 2305,
|
2461 |
+
"[110Te]": 2306,
|
2462 |
+
"[58Fe+3]": 2307,
|
2463 |
+
"[142Nd]": 2308,
|
2464 |
+
"[38K]": 2309,
|
2465 |
+
"[198Au+3]": 2310,
|
2466 |
+
"[122IH]": 2311,
|
2467 |
+
"[38PH3]": 2312,
|
2468 |
+
"[130I-]": 2313,
|
2469 |
+
"[40K+]": 2314,
|
2470 |
+
"[38K+]": 2315,
|
2471 |
+
"[28Mg+2]": 2316,
|
2472 |
+
"[208Tl+]": 2317,
|
2473 |
+
"[13OH2]": 2318,
|
2474 |
+
"[198Bi]": 2319,
|
2475 |
+
"[192Bi]": 2320,
|
2476 |
+
"[194Bi]": 2321,
|
2477 |
+
"[196Bi]": 2322,
|
2478 |
+
"[132I-]": 2323,
|
2479 |
+
"[83Sr+2]": 2324,
|
2480 |
+
"[169Er+3]": 2325,
|
2481 |
+
"[122I-]": 2326,
|
2482 |
+
"[120I-]": 2327,
|
2483 |
+
"[92Sr+2]": 2328,
|
2484 |
+
"[126I-]": 2329,
|
2485 |
+
"[24Mg]": 2330,
|
2486 |
+
"[84Sr]": 2331,
|
2487 |
+
"[118Pd+2]": 2332,
|
2488 |
+
"[118Pd]": 2333,
|
2489 |
+
"[AsH4]": 2334,
|
2490 |
+
"[127I-]": 2335,
|
2491 |
+
"[9C-]": 2336,
|
2492 |
+
"[11CH3+]": 2337,
|
2493 |
+
"[17B]": 2338,
|
2494 |
+
"[7B]": 2339,
|
2495 |
+
"[4HH]": 2340,
|
2496 |
+
"[18C-]": 2341,
|
2497 |
+
"[22CH3-]": 2342,
|
2498 |
+
"[22CH4]": 2343,
|
2499 |
+
"[17C-]": 2344,
|
2500 |
+
"[15CH3]": 2345,
|
2501 |
+
"[16CH3]": 2346,
|
2502 |
+
"[11NH3]": 2347,
|
2503 |
+
"[21NH3]": 2348,
|
2504 |
+
"[11N-]": 2349,
|
2505 |
+
"[11NH]": 2350,
|
2506 |
+
"[16CH]": 2351,
|
2507 |
+
"[17CH2]": 2352,
|
2508 |
+
"[99Ru+2]": 2353,
|
2509 |
+
"[181Ta+2]": 2354,
|
2510 |
+
"[181Ta]": 2355,
|
2511 |
+
"[20CH]": 2356,
|
2512 |
+
"[32PH2]": 2357,
|
2513 |
+
"[55Fe+2]": 2358,
|
2514 |
+
"[SH3]": 2359,
|
2515 |
+
"[S@H]": 2360,
|
2516 |
+
"<unk>": 2361
|
2517 |
+
},
|
2518 |
+
"unk_token": "<unk>"
|
2519 |
+
}
|
2520 |
+
}
|
tokenizer_config.json
CHANGED
@@ -41,6 +41,12 @@
|
|
41 |
"special": true
|
42 |
}
|
43 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
"clean_up_tokenization_spaces": true,
|
45 |
"cls_token": "<bos>",
|
46 |
"mask_token": "<mask>",
|
|
|
41 |
"special": true
|
42 |
}
|
43 |
},
|
44 |
+
"auto_map": {
|
45 |
+
"AutoTokenizer": [
|
46 |
+
"tokenization_molformer.MolformerTokenizer",
|
47 |
+
"tokenization_molformer_fast.MolformerTokenizerFast"
|
48 |
+
]
|
49 |
+
},
|
50 |
"clean_up_tokenization_spaces": true,
|
51 |
"cls_token": "<bos>",
|
52 |
"mask_token": "<mask>",
|