File size: 16,597 Bytes
197c331
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Rhizome
# Version beta 0.0, August 2023
# Property of IBM Research, Accelerated Discovery
#

"""
PLEASE NOTE THIS IMPLEMENTATION INCLUDES THE ORIGINAL SOURCE CODE (AND SOME ADAPTATIONS)
OF THE MHG IMPLEMENTATION OF HIROSHI KAJINO AT IBM TRL ALREADY PUBLICLY AVAILABLE. 
THIS MIGHT INFLUENCE THE DECISION OF THE FINAL LICENSE SO CAREFUL CHECK NEEDS BE DONE. 
"""

""" Title """

__author__ = "Hiroshi Kajino <KAJINO@jp.ibm.com>"
__copyright__ = "(c) Copyright IBM Corp. 2018"
__version__ = "0.1"
__date__ = "Jan 1 2018"

import numpy as np
import torch
import torch.nn.functional as F
from graph_grammar.graph_grammar.hrg import ProductionRuleCorpus
from torch import nn
from torch.autograd import Variable

class MolecularProdRuleEmbedding(nn.Module):
    
    ''' molecular fingerprint layer
    '''

    def __init__(self, prod_rule_corpus, layer2layer_activation, layer2out_activation,
                 out_dim=32, element_embed_dim=32,
                 num_layers=3, padding_idx=None, use_gpu=False):
        super().__init__()
        if padding_idx is not None:
            assert padding_idx == -1, 'padding_idx must be -1.'
        self.prod_rule_corpus = prod_rule_corpus
        self.layer2layer_activation = layer2layer_activation
        self.layer2out_activation = layer2out_activation
        self.out_dim = out_dim
        self.element_embed_dim = element_embed_dim
        self.num_layers = num_layers
        self.padding_idx = padding_idx
        self.use_gpu = use_gpu

        self.layer2layer_list = []
        self.layer2out_list = []

        if self.use_gpu:
            self.atom_embed = torch.randn(self.prod_rule_corpus.num_edge_symbol,
                                          self.element_embed_dim, requires_grad=True).cuda()
            self.bond_embed = torch.randn(self.prod_rule_corpus.num_node_symbol,
                                          self.element_embed_dim, requires_grad=True).cuda()
            self.ext_id_embed = torch.randn(self.prod_rule_corpus.num_ext_id,
                                            self.element_embed_dim, requires_grad=True).cuda()
            for _ in range(num_layers):
                self.layer2layer_list.append(nn.Linear(self.element_embed_dim, self.element_embed_dim).cuda())
                self.layer2out_list.append(nn.Linear(self.element_embed_dim, self.out_dim).cuda())
        else:
            self.atom_embed = torch.randn(self.prod_rule_corpus.num_edge_symbol,
                                          self.element_embed_dim, requires_grad=True)
            self.bond_embed = torch.randn(self.prod_rule_corpus.num_node_symbol,
                                          self.element_embed_dim, requires_grad=True)
            self.ext_id_embed = torch.randn(self.prod_rule_corpus.num_ext_id,
                                            self.element_embed_dim, requires_grad=True)
            for _ in range(num_layers):
                self.layer2layer_list.append(nn.Linear(self.element_embed_dim, self.element_embed_dim))
                self.layer2out_list.append(nn.Linear(self.element_embed_dim, self.out_dim))


    def forward(self, prod_rule_idx_seq):
        ''' forward model for mini-batch

        Parameters
        ----------
        prod_rule_idx_seq : (batch_size, length)

        Returns
        -------
        Variable, shape (batch_size, length, out_dim)
        '''
        batch_size, length = prod_rule_idx_seq.shape
        if self.use_gpu:
            out = Variable(torch.zeros((batch_size, length, self.out_dim))).cuda()
        else:
            out = Variable(torch.zeros((batch_size, length, self.out_dim)))
        for each_batch_idx in range(batch_size):
            for each_idx in range(length):
                if int(prod_rule_idx_seq[each_batch_idx, each_idx]) == len(self.prod_rule_corpus.prod_rule_list):
                    continue
                else:
                    each_prod_rule = self.prod_rule_corpus.prod_rule_list[int(prod_rule_idx_seq[each_batch_idx, each_idx])]
                    layer_wise_embed_dict = {each_edge: self.atom_embed[
                        each_prod_rule.rhs.edge_attr(each_edge)['symbol_idx']]
                                             for each_edge in each_prod_rule.rhs.edges}
                    layer_wise_embed_dict.update({each_node: self.bond_embed[
                        each_prod_rule.rhs.node_attr(each_node)['symbol_idx']]
                                                  for each_node in each_prod_rule.rhs.nodes})
                    for each_node in each_prod_rule.rhs.nodes:
                        if 'ext_id' in each_prod_rule.rhs.node_attr(each_node):
                            layer_wise_embed_dict[each_node] \
                                = layer_wise_embed_dict[each_node] \
                                + self.ext_id_embed[each_prod_rule.rhs.node_attr(each_node)['ext_id']]

                    for each_layer in range(self.num_layers):
                        next_layer_embed_dict = {}
                        for each_edge in each_prod_rule.rhs.edges:
                            v = layer_wise_embed_dict[each_edge]
                            for each_node in each_prod_rule.rhs.nodes_in_edge(each_edge):
                                v = v + layer_wise_embed_dict[each_node]
                            next_layer_embed_dict[each_edge] = self.layer2layer_activation(self.layer2layer_list[each_layer](v))
                            out[each_batch_idx, each_idx, :] \
                                = out[each_batch_idx, each_idx, :] + self.layer2out_activation(self.layer2out_list[each_layer](v))
                        for each_node in each_prod_rule.rhs.nodes:
                            v = layer_wise_embed_dict[each_node]
                            for each_edge in each_prod_rule.rhs.adj_edges(each_node):
                                v = v + layer_wise_embed_dict[each_edge]
                            next_layer_embed_dict[each_node] = self.layer2layer_activation(self.layer2layer_list[each_layer](v))
                            out[each_batch_idx, each_idx, :]\
                                = out[each_batch_idx, each_idx, :] + self.layer2out_activation(self.layer2out_list[each_layer](v))
                        layer_wise_embed_dict = next_layer_embed_dict
                        
        return out


class MolecularProdRuleEmbeddingLastLayer(nn.Module):
    
    ''' molecular fingerprint layer
    '''

    def __init__(self, prod_rule_corpus, layer2layer_activation, layer2out_activation,
                 out_dim=32, element_embed_dim=32,
                 num_layers=3, padding_idx=None, use_gpu=False):
        super().__init__()
        if padding_idx is not None:
            assert padding_idx == -1, 'padding_idx must be -1.'
        self.prod_rule_corpus = prod_rule_corpus
        self.layer2layer_activation = layer2layer_activation
        self.layer2out_activation = layer2out_activation
        self.out_dim = out_dim
        self.element_embed_dim = element_embed_dim
        self.num_layers = num_layers
        self.padding_idx = padding_idx
        self.use_gpu = use_gpu

        self.layer2layer_list = []
        self.layer2out_list = []

        if self.use_gpu:
            self.atom_embed = nn.Embedding(self.prod_rule_corpus.num_edge_symbol, self.element_embed_dim).cuda()
            self.bond_embed = nn.Embedding(self.prod_rule_corpus.num_node_symbol, self.element_embed_dim).cuda()
            for _ in range(num_layers+1):
                self.layer2layer_list.append(nn.Linear(self.element_embed_dim, self.element_embed_dim).cuda())
                self.layer2out_list.append(nn.Linear(self.element_embed_dim, self.out_dim).cuda())
        else:
            self.atom_embed = nn.Embedding(self.prod_rule_corpus.num_edge_symbol, self.element_embed_dim)
            self.bond_embed = nn.Embedding(self.prod_rule_corpus.num_node_symbol, self.element_embed_dim)
            for _ in range(num_layers+1):
                self.layer2layer_list.append(nn.Linear(self.element_embed_dim, self.element_embed_dim))
                self.layer2out_list.append(nn.Linear(self.element_embed_dim, self.out_dim))


    def forward(self, prod_rule_idx_seq):
        ''' forward model for mini-batch

        Parameters
        ----------
        prod_rule_idx_seq : (batch_size, length)

        Returns
        -------
        Variable, shape (batch_size, length, out_dim)
        '''
        batch_size, length = prod_rule_idx_seq.shape
        if self.use_gpu:
            out = Variable(torch.zeros((batch_size, length, self.out_dim))).cuda()
        else:
            out = Variable(torch.zeros((batch_size, length, self.out_dim)))
        for each_batch_idx in range(batch_size):
            for each_idx in range(length):
                if int(prod_rule_idx_seq[each_batch_idx, each_idx]) == len(self.prod_rule_corpus.prod_rule_list):
                    continue
                else:
                    each_prod_rule = self.prod_rule_corpus.prod_rule_list[int(prod_rule_idx_seq[each_batch_idx, each_idx])]

                    if self.use_gpu:
                        layer_wise_embed_dict = {each_edge: self.atom_embed(
                            Variable(torch.LongTensor(
                                [each_prod_rule.rhs.edge_attr(each_edge)['symbol_idx']]
                            ), requires_grad=False).cuda())
                                                 for each_edge in each_prod_rule.rhs.edges}
                        layer_wise_embed_dict.update({each_node: self.bond_embed(
                                                         Variable(
                                                             torch.LongTensor([
                                                                     each_prod_rule.rhs.node_attr(each_node)['symbol_idx']]),
                                                             requires_grad=False).cuda()
                                                     ) for each_node in each_prod_rule.rhs.nodes})
                    else:
                        layer_wise_embed_dict = {each_edge: self.atom_embed(
                            Variable(torch.LongTensor(
                                [each_prod_rule.rhs.edge_attr(each_edge)['symbol_idx']]
                            ), requires_grad=False))
                                                 for each_edge in each_prod_rule.rhs.edges}
                        layer_wise_embed_dict.update({each_node: self.bond_embed(
                                                         Variable(
                                                             torch.LongTensor([
                                                                     each_prod_rule.rhs.node_attr(each_node)['symbol_idx']]), 
                                                             requires_grad=False)
                                                     ) for each_node in each_prod_rule.rhs.nodes})

                    for each_layer in range(self.num_layers):
                        next_layer_embed_dict = {}
                        for each_edge in each_prod_rule.rhs.edges:
                            v = layer_wise_embed_dict[each_edge]
                            for each_node in each_prod_rule.rhs.nodes_in_edge(each_edge):
                                v += layer_wise_embed_dict[each_node]
                            next_layer_embed_dict[each_edge] = self.layer2layer_activation(self.layer2layer_list[each_layer](v))
                        for each_node in each_prod_rule.rhs.nodes:
                            v = layer_wise_embed_dict[each_node]
                            for each_edge in each_prod_rule.rhs.adj_edges(each_node):
                                v += layer_wise_embed_dict[each_edge]
                            next_layer_embed_dict[each_node] = self.layer2layer_activation(self.layer2layer_list[each_layer](v))
                        layer_wise_embed_dict = next_layer_embed_dict
                    for each_edge in each_prod_rule.rhs.edges:
                        out[each_batch_idx, each_idx, :] = self.layer2out_activation(self.layer2out_list[self.num_layers](v))
                    for each_edge in each_prod_rule.rhs.edges:
                        out[each_batch_idx, each_idx, :] = self.layer2out_activation(self.layer2out_list[self.num_layers](v))
                        
        return out


class MolecularProdRuleEmbeddingUsingFeatures(nn.Module):
    
    ''' molecular fingerprint layer
    '''

    def __init__(self, prod_rule_corpus, layer2layer_activation, layer2out_activation,
                 out_dim=32, num_layers=3, padding_idx=None, use_gpu=False):
        super().__init__()
        if padding_idx is not None:
            assert padding_idx == -1, 'padding_idx must be -1.'
        self.feature_dict, self.feature_dim = prod_rule_corpus.construct_feature_vectors()
        self.prod_rule_corpus = prod_rule_corpus
        self.layer2layer_activation = layer2layer_activation
        self.layer2out_activation = layer2out_activation
        self.out_dim = out_dim
        self.num_layers = num_layers
        self.padding_idx = padding_idx
        self.use_gpu = use_gpu

        self.layer2layer_list = []
        self.layer2out_list = []

        if self.use_gpu:
            for each_key in self.feature_dict:
                self.feature_dict[each_key] = self.feature_dict[each_key].to_dense().cuda()
            for _ in range(num_layers):
                self.layer2layer_list.append(nn.Linear(self.feature_dim, self.feature_dim).cuda())
                self.layer2out_list.append(nn.Linear(self.feature_dim, self.out_dim).cuda())
        else:
            for _ in range(num_layers):
                self.layer2layer_list.append(nn.Linear(self.feature_dim, self.feature_dim))
                self.layer2out_list.append(nn.Linear(self.feature_dim, self.out_dim))


    def forward(self, prod_rule_idx_seq):
        ''' forward model for mini-batch

        Parameters
        ----------
        prod_rule_idx_seq : (batch_size, length)

        Returns
        -------
        Variable, shape (batch_size, length, out_dim)
        '''
        batch_size, length = prod_rule_idx_seq.shape
        if self.use_gpu:
            out = Variable(torch.zeros((batch_size, length, self.out_dim))).cuda()
        else:
            out = Variable(torch.zeros((batch_size, length, self.out_dim)))
        for each_batch_idx in range(batch_size):
            for each_idx in range(length):
                if int(prod_rule_idx_seq[each_batch_idx, each_idx]) == len(self.prod_rule_corpus.prod_rule_list):
                    continue
                else:
                    each_prod_rule = self.prod_rule_corpus.prod_rule_list[int(prod_rule_idx_seq[each_batch_idx, each_idx])]
                    edge_list = sorted(list(each_prod_rule.rhs.edges))
                    node_list = sorted(list(each_prod_rule.rhs.nodes))
                    adj_mat = torch.FloatTensor(each_prod_rule.rhs_adj_mat(edge_list + node_list).todense() + np.identity(len(edge_list)+len(node_list)))
                    if self.use_gpu:
                        adj_mat = adj_mat.cuda()
                    layer_wise_embed = [
                        self.feature_dict[each_prod_rule.rhs.edge_attr(each_edge)['symbol']]
                        for each_edge in edge_list]\
                            + [self.feature_dict[each_prod_rule.rhs.node_attr(each_node)['symbol']]
                               for each_node in node_list]
                    for each_node in each_prod_rule.ext_node.values():
                        layer_wise_embed[each_prod_rule.rhs.num_edges + node_list.index(each_node)] \
                                = layer_wise_embed[each_prod_rule.rhs.num_edges + node_list.index(each_node)] \
                                + self.feature_dict[('ext_id', each_prod_rule.rhs.node_attr(each_node)['ext_id'])]
                    layer_wise_embed = torch.stack(layer_wise_embed)

                    for each_layer in range(self.num_layers):
                        message = adj_mat @ layer_wise_embed
                        next_layer_embed = self.layer2layer_activation(self.layer2layer_list[each_layer](message))
                        out[each_batch_idx, each_idx, :] \
                                = out[each_batch_idx, each_idx, :] \
                                + self.layer2out_activation(self.layer2out_list[each_layer](message)).sum(dim=0)
                        layer_wise_embed = next_layer_embed
        return out