File size: 2,429 Bytes
400e380 26b1a54 400e380 26b1a54 400e380 b0f4562 632ad76 ea6e6e3 632ad76 400e380 632ad76 400e380 26b1a54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
---
tags:
- generated_from_trainer
- not-for-all-audiences
model-index:
- name: TinySatirik-m
results: []
license: mit
datasets:
- igorktech/anekdots
language:
- ru
pipeline_tag: text-generation
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# TinySatirik-m
This model is a pre-trained version of really tiny LLama2 model on an [anekdots](https://huggingface.co/datasets/igorktech/anekdots) dataset.
Inspired by [TinyStories](https://arxiv.org/abs/2305.07759).
## Tokenizer
To utilize the model, install the [special tokenizer](https://github.com/Koziev/character-tokenizer):
```bash
pip install git+https://github.com/Koziev/character-tokenizer
```
In addition to recognizing Cyrillic characters and punctuation, this tokenizer is aware of special tokens such as ```<s>```, ```</s>```, ```<pad>```, and ```<unk>```.
As this is a non-standard tokenizer for transformers, load it not via ```transformers.AutoTokenizer.from_pretrained```, but somewhat like this:
```python
import charactertokenizer
...
tokenizer = charactertokenizer.CharacterTokenizer.from_pretrained('igorktech/CharPicoSatirik-m')
```
To observe tokenization, use this code snippet:
```python
prompt = '<s>Hello World\n'
encoded_prompt = tokenizer.encode(prompt, return_tensors='pt')
print('Tokenized prompt:', ' | '.join(tokenizer.decode([t]) for t in encoded_prompt[0]))
```
You will see a list of tokens separated by the ```|``` symbol:
```
Tokenized prompt: <s> | H | e | l | l | o | | W | o | r | l | d |
```
Tokenizer created by [Koziev](https://github.com/Koziev).
## Model description
Llama2 architecture based.
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 4
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 250
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0 |