--- license: mit language: - multilingual base_model: - FacebookAI/xlm-roberta-large pipeline_tag: token-classification --- # Multilingual Identification of English Code-Switching AnE-LID (Any-English Code-Switching Language Identification) is a token-level model for detecting English code-switching in multilingual texts. It classifies words into four classes: `English`, `notEnglish`, `Mixed`, and `Other`. The model shows strong performance on both languages seen and unseen in the training data. # Usage You can use AnE-LID with Huggingface’s `pipeline` or `AutoModelForTokenClassification`. Let's try the following example (taken from [this](https://aclanthology.org/2023.calcs-1.1/) paper) ```python input = "ich glaub ich muss echt rewatchen like i feel so empty was soll ich denn jetzt machen?" ``` ## Pipeline ```python from transformers import pipeline classifier = pipeline("token-classification", model="igorsterner/AnE-LID", aggregation_strategy="simple") result = classifier(input) ``` which returns ``` [{'entity_group': 'notEnglish', 'score': 0.9999998, 'word': 'ich glaub ich muss echt', 'start': 0, 'end': 23}, {'entity_group': 'Mixed', 'score': 0.9999941, 'word': 'rewatchen', 'start': 24, 'end': 33}, {'entity_group': 'English', 'score': 0.99999154, 'word': 'like i feel so empty', 'start': 34, 'end': 54}, {'entity_group': 'notEnglish', 'score': 0.9292571, 'word': 'was soll ich denn jetzt machen?', 'start': 55, 'end': 86}] ``` ## Advanced If your input is already word-tokenized, and you want the corresponding word language labels, you can try the following strategy ```python import torch from transformers import AutoModelForTokenClassification, AutoTokenizer lid_model_name = "igorsterner/AnE-LID" lid_tokenizer = AutoTokenizer.from_pretrained(lid_model_name) lid_model = AutoModelForTokenClassification.from_pretrained(lid_model_name) word_tokens = ['ich', 'glaub', 'ich', 'muss', 'echt', 'rewatchen', 'like', 'i', 'feel', 'so', 'empty', 'was', 'soll', 'ich', 'denn', 'jetzt', 'machen', '?'] subword_inputs = lid_tokenizer( word_tokens, truncation=True, is_split_into_words=True, return_tensors="pt" ) subword2word = subword_inputs.word_ids(batch_index=0) logits = lid_model(**subword_inputs).logits predictions = torch.argmax(logits, dim=2) predicted_subword_labels = [lid_model.config.id2label[t.item()] for t in predictions[0]] predicted_word_labels = [[] for _ in range(len(word_tokens))] for idx, predicted_subword in enumerate(predicted_subword_labels): if subword2word[idx] is not None: predicted_word_labels[subword2word[idx]].append(predicted_subword) def most_frequent(lst): return max(set(lst), key=lst.count) if lst else "Other" predicted_word_labels = [most_frequent(sublist) for sublist in predicted_word_labels] for token, label in zip(word_tokens, predicted_word_labels): print(f"{token}: {label}") ``` which returns ``` ich: notEnglish glaub: notEnglish ich: notEnglish muss: notEnglish echt: notEnglish rewatchen: Mixed like: English i: English feel: English so: English empty: English was: notEnglish soll: notEnglish ich: notEnglish denn: notEnglish jetzt: notEnglish machen: notEnglish ?: Other ``` # Named entities If you also want to tag named entities, you can also run [AnE-NER](https://huggingface.co/igorsterner/ane-lid). Checkout my evaluation scripts for examples on using both at the same time, as we did in the paper: [https://github.com/igorsterner/AnE/tree/main/eval](https://github.com/igorsterner/AnE/tree/main/eval). # Citation Please consider citing my work if it helped you ``` @inproceedings{sterner-2024-multilingual, title = "Multilingual Identification of {E}nglish Code-Switching", author = "Sterner, Igor", editor = {Scherrer, Yves and Jauhiainen, Tommi and Ljube{\v{s}}i{\'c}, Nikola and Zampieri, Marcos and Nakov, Preslav and Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Eleventh Workshop on NLP for Similar Languages, Varieties, and Dialects (VarDial 2024)", month = jun, year = "2024", address = "Mexico City, Mexico", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2024.vardial-1.14", doi = "10.18653/v1/2024.vardial-1.14", pages = "163--173", abstract = "Code-switching research depends on fine-grained language identification. In this work, we study existing corpora used to train token-level language identification systems. We aggregate these corpora with a consistent labelling scheme and train a system to identify English code-switching in multilingual text. We show that the system identifies code-switching in unseen language pairs with absolute measure 2.3-4.6{\%} better than language-pair-specific SoTA. We also analyse the correlation between typological similarity of the languages and difficulty in recognizing code-switching.", } ```