import random from dataclasses import dataclass, field from functools import partial from pathlib import Path import jax import jax.numpy as jnp import numpy as np from braceexpand import braceexpand from datasets import Dataset, load_dataset from .model.text import TextNormalizer @dataclass class Dataset: dataset_repo_or_path: str train_file: str = None validation_file: str = None streaming: bool = True use_auth_token: bool = False text_column: str = "caption" encoding_column: str = "encoding" max_train_samples: int = None max_eval_samples: int = None preprocessing_num_workers: int = None overwrite_cache: bool = False do_train: bool = False do_eval: bool = True seed_dataset: int = None shard_by_host: bool = False blank_caption_prob: float = 0.0 clip_score_column: str = "clip_score" min_clip_score: float = None max_clip_score: float = None filter_column: str = None filter_value: str = None multi_eval_ds: bool = False train_dataset: Dataset = field(init=False) eval_dataset: Dataset = field(init=False) other_eval_datasets: list = field(init=False) rng_dataset: jnp.ndarray = field(init=False) multi_hosts: bool = field(init=False) def __post_init__(self): if self.seed_dataset is None: # create a random seed self.seed_dataset = random.randint(0, 2**32 - 1) # set numpy rng self.np_rng = np.random.default_rng(self.seed_dataset) self.multi_hosts = jax.process_count() > 1 # feed blank captions only in streaming mode for now # otherwise dataset could be cached with same blanked captions if self.blank_caption_prob: assert ( self.streaming is True ), "blank_caption_prob can only be used in streaming mode" # define data_files if self.train_file is not None or self.validation_file is not None: # accept braceexpand notation for k in ["train_file", "validation_file"]: f = getattr(self, k) if isinstance(f, str): setattr(self, k, list(braceexpand(f))) # for list of files, split training data shards by host if ( isinstance(self.train_file, list) and self.multi_hosts and self.shard_by_host ): self.train_file = self.train_file[ jax.process_index() :: jax.process_count() ] data_files = { "train": self.train_file, "validation": self.validation_file, } else: data_files = None # multiple validation datasets if self.multi_eval_ds: assert Path( self.dataset_repo_or_path ).is_dir(), f"{self.dataset_repo_or_path} is not a directory, required for multi_eval_ds" data_files = { split.name: [str(f) for f in split.glob("*.parquet")] for split in Path(self.dataset_repo_or_path).glob("*") } # rename "valid" to "validation" if present for consistency if "valid" in data_files: data_files["validation"] = data_files["valid"] del data_files["valid"] self.dataset_repo_or_path = "parquet" # load dataset dataset = load_dataset( self.dataset_repo_or_path, data_files=data_files, streaming=self.streaming, use_auth_token=self.use_auth_token, ) if self.do_train: if "train" not in dataset: raise ValueError("Training requires a training dataset") self.train_dataset = dataset["train"] if self.max_train_samples is not None: self.train_dataset = ( self.train_dataset.take(self.max_train_samples) if self.streaming else self.train_dataset.select(range(self.max_train_samples)) ) if self.do_eval: if "validation" not in dataset: raise ValueError("Evaluating requires a validation dataset") self.eval_dataset = dataset["validation"] if self.max_eval_samples is not None: self.eval_dataset = ( self.eval_dataset.take(self.max_eval_samples) if self.streaming else self.eval_dataset.select(range(self.max_eval_samples)) ) # other eval datasets other_eval_splits = dataset.keys() - {"train", "validation"} self.other_eval_datasets = { split: dataset[split] for split in other_eval_splits } def preprocess(self, tokenizer, config): # get required config variables decoder_start_token_id = config.decoder_start_token_id normalize_text = config.normalize_text max_length = config.max_text_length if self.streaming: # we need to shuffle early in streaming mode if hasattr(self, "train_dataset"): self.train_dataset = self.train_dataset.shuffle( buffer_size=5000, seed=self.seed_dataset ) else: self.rng_dataset = jax.random.PRNGKey(self.seed_dataset) # filter data partial_filter_function = partial( filter_function, filter_column=self.filter_column, filter_value=self.filter_value, clip_score_column=self.clip_score_column, min_clip_score=self.min_clip_score, max_clip_score=self.max_clip_score, ) for ds in ["train_dataset", "eval_dataset"]: if hasattr(self, ds): setattr( self, ds, ( getattr(self, ds).filter(partial_filter_function) if self.streaming else getattr(self, ds).filter( partial_filter_function, num_proc=self.preprocessing_num_workers, load_from_cache_file=not self.overwrite_cache, desc="Filtering datasets", ) ), ) if hasattr(self, "other_eval_datasets"): self.other_eval_datasets = { split: ( ds.filter(partial_filter_function) if self.streaming else ds.filter( partial_filter_function, num_proc=self.preprocessing_num_workers, load_from_cache_file=not self.overwrite_cache, desc="Filtering datasets", ) ) for split, ds in self.other_eval_datasets.items() } # normalize text if normalize_text: text_normalizer = TextNormalizer() partial_normalize_function = partial( normalize_function, text_column=self.text_column, text_normalizer=text_normalizer, ) for ds in ["train_dataset", "eval_dataset"]: if hasattr(self, ds): setattr( self, ds, ( getattr(self, ds).map(partial_normalize_function) if self.streaming else getattr(self, ds).map( partial_normalize_function, num_proc=self.preprocessing_num_workers, load_from_cache_file=not self.overwrite_cache, desc="Normalizing datasets", ) ), ) if hasattr(self, "other_eval_datasets"): self.other_eval_datasets = { split: ( ds.map(partial_normalize_function) if self.streaming else ds.map( partial_normalize_function, num_proc=self.preprocessing_num_workers, load_from_cache_file=not self.overwrite_cache, desc="Normalizing datasets", ) ) for split, ds in self.other_eval_datasets.items() } # blank captions if self.blank_caption_prob: partial_blank_caption_function = partial( blank_caption_function, text_column=self.text_column, blank_caption_prob=self.blank_caption_prob, rng=self.np_rng, ) if hasattr(self, "train_dataset"): self.train_dataset = ( self.train_dataset.map(partial_blank_caption_function) if self.streaming else self.train_dataset.map( partial_blank_caption_function, num_proc=None if self.seed_dataset else self.preprocessing_num_workers, load_from_cache_file=False, desc="Blanking some captions", ) ) # preprocess partial_preprocess_function = partial( preprocess_function, tokenizer=tokenizer, text_column=self.text_column, encoding_column=self.encoding_column, max_length=max_length, decoder_start_token_id=decoder_start_token_id, ) for ds in ["train_dataset", "eval_dataset"]: if hasattr(self, ds): setattr( self, ds, ( getattr(self, ds).map( partial_preprocess_function, batched=True, remove_columns=[ self.text_column, self.encoding_column, ], ) if self.streaming else getattr(self, ds).map( partial_preprocess_function, batched=True, remove_columns=getattr(ds, "column_names"), num_proc=self.preprocessing_num_workers, load_from_cache_file=not self.overwrite_cache, desc="Preprocessing datasets", ) ), ) if hasattr(self, "other_eval_datasets"): self.other_eval_datasets = { split: ( ds.map( partial_preprocess_function, batched=True, remove_columns=[ self.text_column, self.encoding_column, ], ) if self.streaming else ds.map( partial_preprocess_function, batched=True, remove_columns=getattr(ds, "column_names"), num_proc=self.preprocessing_num_workers, load_from_cache_file=not self.overwrite_cache, desc="Preprocessing datasets", ) ) for split, ds in self.other_eval_datasets.items() } def dataloader(self, split, batch_size, epoch=None): def _dataloader_datasets_non_streaming( dataset: Dataset, rng: jax.random.PRNGKey = None, ): """ Returns batches of size `batch_size` from truncated `dataset`, sharded over all local devices. Shuffle batches if rng is set. """ steps_per_epoch = len(dataset) // batch_size if rng is not None: batch_idx = jax.random.permutation(rng, len(dataset)) else: batch_idx = jnp.arange(len(dataset)) batch_idx = batch_idx[ : steps_per_epoch * batch_size ] # Skip incomplete batch. batch_idx = batch_idx.reshape((steps_per_epoch, batch_size)) for idx in batch_idx: batch = dataset[idx] batch = {k: jnp.array(v) for k, v in batch.items()} yield batch def _dataloader_datasets_streaming( dataset: Dataset, epoch: int, ): keys = ["input_ids", "attention_mask", "labels", "decoder_input_ids"] batch = {k: [] for k in keys} first_loop = True # stop after one loop in some cases while (self.multi_hosts and split == "train") or first_loop: # in multi-host, we run forever (no epoch) as hosts need to stop # at the same time and training data may not be split equally # For validation data we put the entire batch on each host and then # keep only the one specific to each host (could be improved but not necessary) if epoch is not None: assert split == "train" # reshuffle training data at each epoch dataset.set_epoch(epoch) epoch += 1 for item in dataset: for k in keys: batch[k].append(item[k]) if len(batch[keys[0]]) == batch_size: batch = {k: jnp.array(v) for k, v in batch.items()} yield batch batch = {k: [] for k in keys} first_loop = False if split == "train": ds = self.train_dataset elif split == "eval": ds = self.eval_dataset else: ds = self.other_eval_datasets[split] if self.streaming: return _dataloader_datasets_streaming(ds, epoch) else: if split == "train": self.rng_dataset, input_rng = jax.random.split(self.rng_dataset) return _dataloader_datasets_non_streaming(ds, input_rng) @property def length(self): len_train_dataset, len_eval_dataset = None, None if self.streaming: # we don't know the length, let's just assume max_samples if defined if self.max_train_samples is not None: len_train_dataset = self.max_train_samples if self.max_eval_samples is not None: len_eval_dataset = self.max_eval_samples else: len_train_dataset = ( len(self.train_dataset) if hasattr(self, "train_dataset") else None ) len_eval_dataset = ( len(self.eval_dataset) if hasattr(self, "eval_dataset") else None ) return len_train_dataset, len_eval_dataset def shift_tokens_right(input_ids: np.array, decoder_start_token_id: int): """ Shift input ids one token to the right. """ shifted_input_ids = np.zeros(input_ids.shape) shifted_input_ids[:, 1:] = input_ids[:, :-1] shifted_input_ids[:, 0] = decoder_start_token_id return shifted_input_ids def blank_caption_function(example, text_column, blank_caption_prob, rng=None): if ( blank_caption_prob and (rng.random() if rng is not None else np.random.random()) < blank_caption_prob ): example[text_column] = "" return example def normalize_function(example, text_column, text_normalizer): example[text_column] = text_normalizer(example[text_column]) return example def filter_function( example, min_clip_score, max_clip_score, clip_score_column, filter_column, filter_value, ): if min_clip_score is not None and example[clip_score_column] < min_clip_score: return False if max_clip_score is not None and example[clip_score_column] > max_clip_score: return False if filter_column is not None and example[filter_column] != filter_value: return False return True def preprocess_function( examples, tokenizer, text_column, encoding_column, max_length, decoder_start_token_id, ): inputs = examples[text_column] # Setting padding="max_length" as we need fixed length inputs for jitted functions model_inputs = tokenizer( inputs, max_length=max_length, padding="max_length", truncation=True, return_tensors="np", ) # set up targets # Note: labels correspond to our target indices # decoder input ids are the same but shifted to the right with bos at the beginning (and without last token) labels = examples[encoding_column] labels = np.asarray(labels) # We need the labels, in addition to the decoder_input_ids, for the compute_loss function model_inputs["labels"] = labels # In our case, this prepends the bos token and removes the last one decoder_input_ids = shift_tokens_right(labels, decoder_start_token_id) model_inputs["decoder_input_ids"] = decoder_input_ids return model_inputs