File size: 2,165 Bytes
27be918
e7985c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27be918
 
e7985c0
 
27be918
e7985c0
27be918
e7985c0
 
 
 
27be918
e7985c0
27be918
e7985c0
27be918
e7985c0
27be918
e7985c0
27be918
e7985c0
27be918
e7985c0
27be918
e7985c0
27be918
e7985c0
27be918
e7985c0
 
 
 
 
 
 
 
 
 
 
 
27be918
e7985c0
27be918
e7985c0
 
 
 
 
 
 
 
 
27be918
 
e7985c0
27be918
e7985c0
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
datasets:
- fleurs
metrics:
- wer
model-index:
- name: w2v-bert2-pashto-augmented
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: fleurs
      type: fleurs
      config: ps_af
      split: test
      args: ps_af
    metrics:
    - name: Wer
      type: wer
      value: 0.34313876482365624
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# w2v-bert2-pashto-augmented

This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the fleurs dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5954
- Wer: 0.3431

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 700
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer    |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 3.0422        | 1.1713 | 100  | 3.0380          | 0.9640 |
| 2.3141        | 2.3426 | 200  | 2.0336          | 0.9464 |
| 0.7365        | 3.5139 | 300  | 0.6768          | 0.4520 |
| 0.557         | 4.6852 | 400  | 0.6051          | 0.3913 |
| 0.5101        | 5.8565 | 500  | 0.6571          | 0.3853 |
| 0.3803        | 7.0278 | 600  | 0.5946          | 0.3497 |
| 0.2452        | 8.1991 | 700  | 0.5954          | 0.3431 |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1