File size: 2,165 Bytes
27be918 e7985c0 27be918 e7985c0 27be918 e7985c0 27be918 e7985c0 27be918 e7985c0 27be918 e7985c0 27be918 e7985c0 27be918 e7985c0 27be918 e7985c0 27be918 e7985c0 27be918 e7985c0 27be918 e7985c0 27be918 e7985c0 27be918 e7985c0 27be918 e7985c0 27be918 e7985c0 27be918 e7985c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
datasets:
- fleurs
metrics:
- wer
model-index:
- name: w2v-bert2-pashto-augmented
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: fleurs
type: fleurs
config: ps_af
split: test
args: ps_af
metrics:
- name: Wer
type: wer
value: 0.34313876482365624
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# w2v-bert2-pashto-augmented
This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the fleurs dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5954
- Wer: 0.3431
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 700
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 3.0422 | 1.1713 | 100 | 3.0380 | 0.9640 |
| 2.3141 | 2.3426 | 200 | 2.0336 | 0.9464 |
| 0.7365 | 3.5139 | 300 | 0.6768 | 0.4520 |
| 0.557 | 4.6852 | 400 | 0.6051 | 0.3913 |
| 0.5101 | 5.8565 | 500 | 0.6571 | 0.3853 |
| 0.3803 | 7.0278 | 600 | 0.5946 | 0.3497 |
| 0.2452 | 8.1991 | 700 | 0.5954 | 0.3431 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|