File size: 2,552 Bytes
3cc38a5 e294886 3cc38a5 4c20bb1 a88066b 3cc38a5 e294886 3cc38a5 072353a 3cc38a5 e294886 3cc38a5 072353a 3cc38a5 07c1722 e294886 a88066b 3cc38a5 072353a f348567 072353a 3cc38a5 e294886 3cc38a5 e294886 3cc38a5 674d21a 3cc38a5 b914315 3cc38a5 674d21a 3cc38a5 674d21a 3cc38a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
---
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
- hf-asr-leaderboard
- pashto
- ps
datasets:
- google/fleurs
metrics:
- wer
base_model: openai/whisper-medium
model-index:
- name: Whisper Medium Pashto
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: google/fleurs
type: google/fleurs
args: 'config: ps_af, split: test'
metrics:
- type: wer
value: 49.4855
name: Wer
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Medium Pashto
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the google/fleurs ps_af dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4807
- Wer: 50.5448
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-07
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- training_steps: 1200
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.0334 | 14.29 | 100 | 1.0348 | 50.0908 |
| 0.0021 | 28.57 | 200 | 1.1971 | 49.4855 |
| 0.0007 | 42.86 | 300 | 1.2651 | 49.7352 |
| 0.0006 | 57.14 | 400 | 1.3084 | 49.9697 |
| 0.0005 | 71.43 | 500 | 1.3479 | 50.0605 |
| 0.0004 | 85.71 | 600 | 1.3835 | 50.3027 |
| 0.0004 | 100.0 | 700 | 1.4139 | 50.4540 |
| 0.0004 | 114.29 | 800 | 1.4382 | 50.4616 |
| 0.0004 | 128.57 | 900 | 1.4545 | 50.5297 |
| 0.0003 | 142.86 | 1000 | 1.4603 | 50.5675 |
| 0.0003 | 157.14 | 1100 | 1.4750 | 50.5599 |
| 0.0003 | 171.43 | 1200 | 1.4807 | 50.5448 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|