ihanif commited on
Commit
f3a8bee
1 Parent(s): 74d5ebc

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +15 -13
README.md CHANGED
@@ -1,39 +1,38 @@
1
  ---
2
  license: apache-2.0
3
  tags:
4
- - whisper-event
5
  - generated_from_trainer
6
  datasets:
7
- - google/fleurs
8
  metrics:
9
  - wer
10
  model-index:
11
- - name: Whisper Small Pashto
12
  results:
13
  - task:
14
  name: Automatic Speech Recognition
15
  type: automatic-speech-recognition
16
  dataset:
17
- name: google/fleurs ps_af
18
- type: google/fleurs
19
  config: ps_af
20
  split: test
21
  args: ps_af
22
  metrics:
23
  - name: Wer
24
  type: wer
25
- value: 56.651029055690074
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
  should probably proofread and complete it, then remove this comment. -->
30
 
31
- # Whisper Small Pashto
32
 
33
- This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the google/fleurs ps_af dataset.
34
  It achieves the following results on the evaluation set:
35
- - Loss: 1.2309
36
- - Wer: 56.6510
37
 
38
  ## Model description
39
 
@@ -53,13 +52,15 @@ More information needed
53
 
54
  The following hyperparameters were used during training:
55
  - learning_rate: 1e-05
56
- - train_batch_size: 16
57
- - eval_batch_size: 8
58
  - seed: 42
 
 
59
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
  - lr_scheduler_type: linear
61
  - lr_scheduler_warmup_steps: 500
62
- - training_steps: 600
63
  - mixed_precision_training: Native AMP
64
 
65
  ### Training results
@@ -72,6 +73,7 @@ The following hyperparameters were used during training:
72
  | 0.054 | 14.81 | 400 | 1.0876 | 57.9903 |
73
  | 0.0159 | 18.52 | 500 | 1.1798 | 57.8768 |
74
  | 0.0045 | 22.22 | 600 | 1.2309 | 56.6510 |
 
75
 
76
 
77
  ### Framework versions
 
1
  ---
2
  license: apache-2.0
3
  tags:
 
4
  - generated_from_trainer
5
  datasets:
6
+ - fleurs
7
  metrics:
8
  - wer
9
  model-index:
10
+ - name: openai/whisper-small
11
  results:
12
  - task:
13
  name: Automatic Speech Recognition
14
  type: automatic-speech-recognition
15
  dataset:
16
+ name: fleurs
17
+ type: fleurs
18
  config: ps_af
19
  split: test
20
  args: ps_af
21
  metrics:
22
  - name: Wer
23
  type: wer
24
+ value: 56.847760290556906
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
  should probably proofread and complete it, then remove this comment. -->
29
 
30
+ # openai/whisper-small
31
 
32
+ This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the fleurs dataset.
33
  It achieves the following results on the evaluation set:
34
+ - Loss: 1.2581
35
+ - Wer: 56.8478
36
 
37
  ## Model description
38
 
 
52
 
53
  The following hyperparameters were used during training:
54
  - learning_rate: 1e-05
55
+ - train_batch_size: 32
56
+ - eval_batch_size: 16
57
  - seed: 42
58
+ - gradient_accumulation_steps: 2
59
+ - total_train_batch_size: 64
60
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
  - lr_scheduler_type: linear
62
  - lr_scheduler_warmup_steps: 500
63
+ - training_steps: 700
64
  - mixed_precision_training: Native AMP
65
 
66
  ### Training results
 
73
  | 0.054 | 14.81 | 400 | 1.0876 | 57.9903 |
74
  | 0.0159 | 18.52 | 500 | 1.1798 | 57.8768 |
75
  | 0.0045 | 22.22 | 600 | 1.2309 | 56.6510 |
76
+ | 0.0026 | 100.0 | 700 | 1.2581 | 56.8478 |
77
 
78
 
79
  ### Framework versions