--- language: - ps license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - google/fleurs metrics: - wer model-index: - name: Whisper Small Pashto - Augmented results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: google/fleurs type: google/fleurs config: null split: None metrics: - name: Wer type: wer value: 53.62439467312349 --- # Whisper Small Pashto - Augmented This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the google/fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.6979 - Wer: 53.6244 - Cer: 22.6847 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 30 - training_steps: 300 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:| | 0.9683 | 1.19 | 100 | 0.8812 | 139.3765 | 131.6166 | | 0.6848 | 2.38 | 200 | 0.7543 | 145.9973 | 151.3369 | | 0.5548 | 3.57 | 300 | 0.6979 | 53.6244 | 22.6847 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2