File size: 1,378 Bytes
2d70374
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
---
license: mit
---


# {UTDRM-RoBERTa}

This is the UTDRM-RoBERTa model from the paper UTDRM: Unsupervised Method for Training Debunked-narrative Retrieval Models.
Please consider citing the following paper if you use this model.

```
@article{singh2023utdrm,
  title={UTDRM: unsupervised method for training debunked-narrative retrieval models},
  author={Singh, Iknoor and Scarton, Carolina and Bontcheva, Kalina},
  journal={EPJ Data Science},
  volume={12},
  number={1},
  pages={59},
  year={2023},
  publisher={Springer}
}
```

## Usage (Sentence-Transformers)

Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:

```
pip install -U sentence-transformers
```

Then you can use the model like this:

```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```


## Full Model Architecture
```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
  (2): Normalize()
)
```