File size: 1,378 Bytes
2d70374 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
---
license: mit
---
# {UTDRM-RoBERTa}
This is the UTDRM-RoBERTa model from the paper UTDRM: Unsupervised Method for Training Debunked-narrative Retrieval Models.
Please consider citing the following paper if you use this model.
```
@article{singh2023utdrm,
title={UTDRM: unsupervised method for training debunked-narrative retrieval models},
author={Singh, Iknoor and Scarton, Carolina and Bontcheva, Kalina},
journal={EPJ Data Science},
volume={12},
number={1},
pages={59},
year={2023},
publisher={Springer}
}
```
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
(2): Normalize()
)
``` |