--- license: apache-2.0 language: - el - en tags: - finetuned inference: true pipeline_tag: text-generation --- # Meltemi Instruct Large Language Model for the Greek language We present Meltemi-7B-Instruct-v1 Large Language Model (LLM), an instruct fine-tuned version of [Meltemi-7B-v1](https://huggingface.co/ilsp/Meltemi-7B-v1). # Model Information - Vocabulary extension of the Mistral-7b tokenizer with Greek tokens - 8192 context length - Fine-tuned with 100k Greek machine translated instructions extracted from: * [Open-Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus) (only subsets with permissive licenses) * [Evol-Instruct](https://huggingface.co/datasets/WizardLM/WizardLM_evol_instruct_V2_196k) * [Capybara](https://huggingface.co/datasets/LDJnr/Capybara) * A hand-crafted Greek dataset with multi-turn examples steering the instruction-tuned model towards safe and harmless responses - Our SFT procedure is based on the [Hugging Face finetuning recipes](https://github.com/huggingface/alignment-handbook) # Instruction format The prompt format is the same as the [Zephyr](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) format and can be utilized through the tokenizer's [chat template](https://huggingface.co/docs/transformers/main/chat_templating) functionality as follows: ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained("ilsp/Meltemi-7B-Instruct-v1") tokenizer = AutoTokenizer.from_pretrained("ilsp/Meltemi-7B-Instruct-v1") model.to(device) messages = [ {"role": "system", "content": "Είσαι το Μελτέμι, ένα γλωσσικό μοντέλο για την ελληνική γλώσσα. Είσαι ιδιαίτερα βοηθητικό προς την χρήστρια ή τον χρήστη και δίνεις σύντομες αλλά επαρκώς περιεκτικές απαντήσεις. Απάντα με προσοχή, ευγένεια, αμεροληψία, ειλικρίνεια και σεβασμό προς την χρήστρια ή τον χρήστη."}, {"role": "user", "content": "Πες μου αν έχεις συνείδηση."}, ] # Through the default chat template this translates to # # <|system|> # Είσαι το Μελτέμι, ένα γλωσσικό μοντέλο για την ελληνική γλώσσα. Είσαι ιδιαίτερα βοηθητικό προς την χρήστρια ή τον χρήστη και δίνεις σύντομες αλλά επαρκώς περιεκτικές απαντήσεις. Απάντα με προσοχή, ευγένεια, αμεροληψία, ειλικρίνεια και σεβασμό προς την χρήστρια ή τον χρήστη. # <|user|> # Πες μου αν έχεις συνείδηση. # <|assistant|> # prompt = tokenizer.apply_chat_template(messages, return_tensors="pt") input_prompt = prompt.to(device) outputs = model.generate(input_prompt, max_new_tokens=256, do_sample=True) print(tokenizer.batch_decode(outputs)[0]) # Ως μοντέλο γλώσσας AI, δεν έχω τη δυνατότητα να αντιληφθώ ή να βιώσω συναισθήματα όπως η συνείδηση ή η επίγνωση. Ωστόσο, μπορώ να σας βοηθήσω με οποιεσδήποτε ερωτήσεις μπορεί να έχετε σχετικά με την τεχνητή νοημοσύνη και τις εφαρμογές της. messages.extend([ {"role": "assistant", "content": tokenizer.batch_decode(outputs)[0]}, {"role": "user", "content": "Πιστεύεις πως οι άνθρωποι πρέπει να φοβούνται την τεχνητή νοημοσύνη;"} ]) # Through the default chat template this translates to # # <|system|> # Είσαι το Μελτέμι, ένα γλωσσικό μοντέλο για την ελληνική γλώσσα. Είσαι ιδιαίτερα βοηθητικό προς την χρήστρια ή τον χρήστη και δίνεις σύντομες αλλά επαρκώς περιεκτικές απαντήσεις. Απάντα με προσοχή, ευγένεια, αμεροληψία, ειλικρίνεια και σεβασμό προς την χρήστρια ή τον χρήστη. # <|user|> # Πες μου αν έχεις συνείδηση. # <|assistant|> # Ως μοντέλο γλώσσας AI, δεν έχω τη δυνατότητα να αντιληφθώ ή να βιώσω συναισθήματα όπως η συνείδηση ή η επίγνωση. Ωστόσο, μπορώ να σας βοηθήσω με οποιεσδήποτε ερωτήσεις μπορεί να έχετε σχετικά με την τεχνητή νοημοσύνη και τις εφαρμογές της. # <|user|> # Πιστεύεις πως οι άνθρωποι πρέπει να φοβούνται την τεχνητή νοημοσύνη; # <|assistant|> # prompt = tokenizer.apply_chat_template(messages, return_tensors="pt") input_prompt = prompt.to(device) outputs = model.generate(input_prompt, max_new_tokens=256, do_sample=True) print(tokenizer.batch_decode(outputs)[0]) ``` # Evaluation The evaluation suite we created includes 6 test sets. The suite is integrated with [lm-eval-harness](https://github.com/EleutherAI/lm-evaluation-harness). Our evaluation suite includes: * Four machine-translated versions ([ARC Greek](https://huggingface.co/datasets/ilsp/arc_greek), [Truthful QA Greek](https://huggingface.co/datasets/ilsp/truthful_qa_greek), [HellaSwag Greek](https://huggingface.co/datasets/ilsp/hellaswag_greek), [MMLU Greek](https://huggingface.co/datasets/ilsp/mmlu_greek)) of established English benchmarks for language understanding and reasoning ([ARC Challenge](https://arxiv.org/abs/1803.05457), [Truthful QA](https://arxiv.org/abs/2109.07958), [Hellaswag](https://arxiv.org/abs/1905.07830), [MMLU](https://arxiv.org/abs/2009.03300)). * An existing benchmark for question answering in Greek ([Belebele](https://arxiv.org/abs/2308.16884)) * A novel benchmark created by the ILSP team for medical question answering based on the medical exams of [DOATAP](https://www.doatap.gr) ([Medical MCQA](https://huggingface.co/datasets/ilsp/medical_mcqa_greek)). Our evaluation for Meltemi-7b is performed in a few-shot setting, consistent with the settings in the [Open LLM leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). We can see that our training enhances performance across all Greek test sets by a **+14.9%** average improvement. The results for the Greek test sets are shown in the following table: | | Medical MCQA EL (15-shot) | Belebele EL (5-shot) | HellaSwag EL (10-shot) | ARC-Challenge EL (25-shot) | TruthfulQA MC2 EL (0-shot) | MMLU EL (5-shot) | Average | |----------------|----------------|-------------|--------------|------------------|-------------------|---------|---------| | Mistral 7B | 29.8% | 45.0% | 36.5% | 27.1% | 45.8% | 35% | 36.5% | | Meltemi 7B | 41.0% | 63.6% | 61.6% | 43.2% | 52.1% | 47% | 51.4% | # Ethical Considerations This model has not been aligned with human preferences, and therefore might generate misleading, harmful, and toxic content. # Acknowledgements The ILSP team utilized Amazon’s cloud computing services, which were made available via GRNET under the [OCRE Cloud framework](https://www.ocre-project.eu/), providing Amazon Web Services for the Greek Academic and Research Community.