--- base_model: mistralai/Mistral-7B-v0.3 library_name: peft license: apache-2.0 tags: - unsloth - generated_from_trainer model-index: - name: Mistral-7B-v0.3_pct_reverse_r32 results: [] --- # Mistral-7B-v0.3_pct_reverse_r32 This model is a fine-tuned version of [mistralai/Mistral-7B-v0.3](https://huggingface.co/mistralai/Mistral-7B-v0.3) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.0458 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 64 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.02 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.991 | 0.0206 | 8 | 2.0312 | | 2.0461 | 0.0413 | 16 | 2.0335 | | 2.0456 | 0.0619 | 24 | 2.0601 | | 2.0584 | 0.0825 | 32 | 2.0879 | | 2.1123 | 0.1032 | 40 | 2.0809 | | 2.0666 | 0.1238 | 48 | 2.0890 | | 2.0733 | 0.1444 | 56 | 2.0954 | | 2.1236 | 0.1651 | 64 | 2.0971 | | 2.1103 | 0.1857 | 72 | 2.1008 | | 2.0876 | 0.2063 | 80 | 2.1042 | | 2.1107 | 0.2270 | 88 | 2.1155 | | 2.0889 | 0.2476 | 96 | 2.1083 | | 2.097 | 0.2682 | 104 | 2.1186 | | 2.0962 | 0.2889 | 112 | 2.1202 | | 2.1415 | 0.3095 | 120 | 2.1305 | | 2.1294 | 0.3301 | 128 | 2.1169 | | 2.1476 | 0.3508 | 136 | 2.1300 | | 2.1725 | 0.3714 | 144 | 2.1245 | | 2.1159 | 0.3920 | 152 | 2.1172 | | 2.0921 | 0.4127 | 160 | 2.1221 | | 2.141 | 0.4333 | 168 | 2.1334 | | 2.1312 | 0.4539 | 176 | 2.1259 | | 2.106 | 0.4746 | 184 | 2.1269 | | 2.1015 | 0.4952 | 192 | 2.1197 | | 2.1368 | 0.5158 | 200 | 2.1164 | | 2.0751 | 0.5364 | 208 | 2.1104 | | 2.135 | 0.5571 | 216 | 2.1105 | | 2.0718 | 0.5777 | 224 | 2.1003 | | 2.0393 | 0.5983 | 232 | 2.1025 | | 2.1034 | 0.6190 | 240 | 2.0946 | | 2.045 | 0.6396 | 248 | 2.0939 | | 2.077 | 0.6602 | 256 | 2.0814 | | 2.0514 | 0.6809 | 264 | 2.0800 | | 2.0222 | 0.7015 | 272 | 2.0774 | | 2.075 | 0.7221 | 280 | 2.0749 | | 2.1013 | 0.7428 | 288 | 2.0705 | | 2.0929 | 0.7634 | 296 | 2.0643 | | 2.0996 | 0.7840 | 304 | 2.0692 | | 2.0507 | 0.8047 | 312 | 2.0588 | | 2.0353 | 0.8253 | 320 | 2.0574 | | 2.0128 | 0.8459 | 328 | 2.0570 | | 2.0508 | 0.8666 | 336 | 2.0503 | | 2.067 | 0.8872 | 344 | 2.0472 | | 2.0821 | 0.9078 | 352 | 2.0476 | | 2.0461 | 0.9285 | 360 | 2.0471 | | 2.0666 | 0.9491 | 368 | 2.0461 | | 2.0639 | 0.9697 | 376 | 2.0458 | | 1.9859 | 0.9904 | 384 | 2.0458 | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.2 - Pytorch 2.3.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1