Chandan Singh commited on
Commit
8477b23
1 Parent(s): 6849df4

add widget

Browse files
Files changed (1) hide show
  1. README.md +43 -12
README.md CHANGED
@@ -1,14 +1,52 @@
1
  ---
2
  license: mit
3
- ---
4
-
5
- ---
6
  tags:
7
  - tabular-classification
8
  - sklearn
9
  datasets:
10
- - wine-quality
11
  - imodels/compas-recidivism
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  ---
13
 
14
 
@@ -31,14 +69,6 @@ X_test = df.drop(columns=['is_recid'])
31
  y_test = df['is_recid'].values
32
  ```
33
 
34
- ### Load the model
35
- ## Wine Quality classification
36
-
37
- ### A Simple Example of Scikit-learn Pipeline
38
-
39
- > Inspired by https://towardsdatascience.com/a-simple-example-of-pipeline-in-machine-learning-with-scikit-learn-e726ffbb6976 by Saptashwa Bhattacharyya
40
-
41
-
42
  ### Load the model
43
 
44
  ```python
@@ -61,4 +91,5 @@ model = joblib.load(cached_download(
61
  ```
62
  preds = model.predict(X_test)
63
  print('accuracy', np.mean(preds==y_test))
 
64
  ```
 
1
  ---
2
  license: mit
 
 
 
3
  tags:
4
  - tabular-classification
5
  - sklearn
6
  datasets:
 
7
  - imodels/compas-recidivism
8
+ widget:
9
+ structuredData:
10
+ age:
11
+ - 40.0
12
+ priors_count:
13
+ - 0.0
14
+ days_b_screening_arrest:
15
+ - -1.0
16
+ c_jail_time:
17
+ - 0.0
18
+ juv_fel_count:
19
+ - 0.0
20
+ juv_other_count:
21
+ - 0.0
22
+ juv_misd_count:
23
+ - 0.0
24
+ c_charge_degree:F:
25
+ - 0.0
26
+ c_charge_degree:M:
27
+ - 1.0
28
+ race:African-American:
29
+ - 0.0
30
+ race:Asian:
31
+ - 0.0
32
+ race:Caucasian:
33
+ - 1.0
34
+ race:Hispanic:
35
+ - 0.0
36
+ race:Native_American:
37
+ - 0.0
38
+ race:Other:
39
+ - 0.0
40
+ age_cat:25_-_45:
41
+ - 1.0
42
+ age_cat:Greater_than_45:
43
+ - 0.0
44
+ age_cat:Less_than_25:
45
+ - 0.0
46
+ sex:Female:
47
+ - 0.0
48
+ sex:Male:
49
+ - 1.0
50
  ---
51
 
52
 
 
69
  y_test = df['is_recid'].values
70
  ```
71
 
 
 
 
 
 
 
 
 
72
  ### Load the model
73
 
74
  ```python
 
91
  ```
92
  preds = model.predict(X_test)
93
  print('accuracy', np.mean(preds==y_test))
94
+ # accuracy 0.6759165485112416
95
  ```