|
|
|
|
|
|
|
|
|
import warnings |
|
from collections.abc import Iterable |
|
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
|
|
from transformers.utils import is_pytesseract_available, is_vision_available |
|
|
|
VISION_LOADED = False |
|
if is_vision_available(): |
|
from PIL import Image |
|
|
|
from transformers.image_utils import load_image |
|
|
|
VISION_LOADED = True |
|
else: |
|
Image = None |
|
load_image = None |
|
|
|
|
|
TESSERACT_LOADED = False |
|
if is_pytesseract_available(): |
|
import pytesseract |
|
|
|
TESSERACT_LOADED = True |
|
else: |
|
pytesseract = None |
|
|
|
|
|
def decode_spans( |
|
start: np.ndarray, end: np.ndarray, topk: int, max_answer_len: int, undesired_tokens: np.ndarray |
|
) -> Tuple: |
|
""" |
|
Take the output of any `ModelForQuestionAnswering` and will generate probabilities for each span to be the actual |
|
answer. |
|
|
|
In addition, it filters out some unwanted/impossible cases like answer len being greater than max_answer_len or |
|
answer end position being before the starting position. The method supports output the k-best answer through the |
|
topk argument. |
|
|
|
Args: |
|
start (`np.ndarray`): Individual start probabilities for each token. |
|
end (`np.ndarray`): Individual end probabilities for each token. |
|
topk (`int`): Indicates how many possible answer span(s) to extract from the model output. |
|
max_answer_len (`int`): Maximum size of the answer to extract from the model's output. |
|
undesired_tokens (`np.ndarray`): Mask determining tokens that can be part of the answer |
|
""" |
|
|
|
if start.ndim == 1: |
|
start = start[None] |
|
|
|
if end.ndim == 1: |
|
end = end[None] |
|
|
|
|
|
outer = np.matmul(np.expand_dims(start, -1), np.expand_dims(end, 1)) |
|
|
|
|
|
candidates = np.tril(np.triu(outer), max_answer_len - 1) |
|
|
|
|
|
scores_flat = candidates.flatten() |
|
if topk == 1: |
|
idx_sort = [np.argmax(scores_flat)] |
|
elif len(scores_flat) < topk: |
|
idx_sort = np.argsort(-scores_flat) |
|
else: |
|
idx = np.argpartition(-scores_flat, topk)[0:topk] |
|
idx_sort = idx[np.argsort(-scores_flat[idx])] |
|
|
|
starts, ends = np.unravel_index(idx_sort, candidates.shape)[1:] |
|
desired_spans = np.isin(starts, undesired_tokens.nonzero()) & np.isin(ends, undesired_tokens.nonzero()) |
|
starts = starts[desired_spans] |
|
ends = ends[desired_spans] |
|
scores = candidates[0, starts, ends] |
|
|
|
return starts, ends, scores |
|
|
|
|
|
def select_starts_ends( |
|
start, |
|
end, |
|
p_mask, |
|
attention_mask, |
|
min_null_score=1000000, |
|
top_k=1, |
|
handle_impossible_answer=False, |
|
max_answer_len=15, |
|
): |
|
""" |
|
Takes the raw output of any `ModelForQuestionAnswering` and first normalizes its outputs and then uses |
|
`decode_spans()` to generate probabilities for each span to be the actual answer. |
|
|
|
Args: |
|
start (`np.ndarray`): Individual start probabilities for each token. |
|
end (`np.ndarray`): Individual end probabilities for each token. |
|
p_mask (`np.ndarray`): A mask with 1 for values that cannot be in the answer |
|
attention_mask (`np.ndarray`): The attention mask generated by the tokenizer |
|
min_null_score(`float`): The minimum null (empty) answer score seen so far. |
|
topk (`int`): Indicates how many possible answer span(s) to extract from the model output. |
|
handle_impossible_answer(`bool`): Whether to allow null (empty) answers |
|
max_answer_len (`int`): Maximum size of the answer to extract from the model's output. |
|
""" |
|
|
|
undesired_tokens = np.abs(np.array(p_mask) - 1) |
|
|
|
if attention_mask is not None: |
|
undesired_tokens = undesired_tokens & attention_mask |
|
|
|
|
|
undesired_tokens_mask = undesired_tokens == 0.0 |
|
|
|
|
|
start = np.where(undesired_tokens_mask, -10000.0, start) |
|
end = np.where(undesired_tokens_mask, -10000.0, end) |
|
|
|
|
|
start = np.exp(start - start.max(axis=-1, keepdims=True)) |
|
start = start / start.sum() |
|
|
|
end = np.exp(end - end.max(axis=-1, keepdims=True)) |
|
end = end / end.sum() |
|
|
|
if handle_impossible_answer: |
|
min_null_score = min(min_null_score, (start[0, 0] * end[0, 0]).item()) |
|
|
|
|
|
start[0, 0] = end[0, 0] = 0.0 |
|
|
|
starts, ends, scores = decode_spans(start, end, top_k, max_answer_len, undesired_tokens) |
|
return starts, ends, scores, min_null_score |
|
|