File size: 6,510 Bytes
debc4ef a76cf3f debc4ef a76cf3f debc4ef a76cf3f debc4ef a76cf3f debc4ef beedfc5 5b2d2fe beedfc5 c381a7f debc4ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
---
language:
- multilingual
- af
- am
- ar
- as
- az
- be
- bg
- bm
- bn
- br
- bs
- ca
- cs
- cy
- da
- de
- el
- en
- eo
- es
- et
- eu
- fa
- ff
- fi
- fr
- fy
- ga
- gd
- gl
- gn
- gu
- ha
- he
- hi
- hr
- ht
- hu
- hy
- id
- ig
- is
- it
- ja
- jv
- ka
- kg
- kk
- km
- kn
- ko
- ku
- ky
- la
- lg
- ln
- lo
- lt
- lv
- mg
- mk
- ml
- mn
- mr
- ms
- my
- ne
- nl
- no
- om
- or
- pa
- pl
- ps
- pt
- qu
- ro
- ru
- sa
- sd
- si
- sk
- sl
- so
- sq
- sr
- ss
- su
- sv
- sw
- ta
- te
- th
- ti
- tl
- tn
- tr
- uk
- ur
- uz
- vi
- wo
- xh
- yo
- zh
tags:
- retrieval
- entity-retrieval
- named-entity-disambiguation
- entity-disambiguation
- named-entity-linking
- entity-linking
- text2text-generation
---
# mGENRE
The historical multilingual named entity linking (NEL) model is based on mGENRE (multilingual Generative ENtity REtrieval) system as presented in [Multilingual Autoregressive Entity Linking](https://arxiv.org/abs/2103.12528). mGENRE uses a sequence-to-sequence approach to entity retrieval (e.g., linking), based on finetuned [mBART](https://arxiv.org/abs/2001.08210) architecture.
GENRE performs retrieval generating the unique entity name conditioned on the input text using constrained beam search to only generate valid identifiers.
This model was finetuned on the following datasets.
| Dataset alias | README | Document type | Languages | Suitable for | Project | License |
|---------|---------|---------------|-----------| ---------------|---------------| ---------------|
| ajmc | [link](documentation/README-ajmc.md) | classical commentaries | de, fr, en | NERC-Coarse, NERC-Fine, EL | [AjMC](https://mromanello.github.io/ajax-multi-commentary/) | [![License: CC BY 4.0](https://img.shields.io/badge/License-CC_BY_4.0-lightgrey.svg)](https://creativecommons.org/licenses/by/4.0/) |
| hipe2020 | [link](documentation/README-hipe2020.md)| historical newspapers | de, fr, en | NERC-Coarse, NERC-Fine, EL | [CLEF-HIPE-2020](https://impresso.github.io/CLEF-HIPE-2020)| [![License: CC BY-NC-SA 4.0](https://img.shields.io/badge/License-CC_BY--NC--SA_4.0-lightgrey.svg)](https://creativecommons.org/licenses/by-nc-sa/4.0/)|
| topres19th | [link](documentation/README-topres19th.md) | historical newspapers | en | NERC-Coarse, EL |[Living with Machines](https://livingwithmachines.ac.uk/) | [![License: CC BY-NC-SA 4.0](https://img.shields.io/badge/License-CC_BY--NC--SA_4.0-lightgrey.svg)](https://creativecommons.org/licenses/by-nc-sa/4.0/)|
| newseye | [link](documentation/README-newseye.md)| historical newspapers | de, fi, fr, sv | NERC-Coarse, NERC-Fine, EL | [NewsEye](https://www.newseye.eu/) | [![License: CC BY 4.0](https://img.shields.io/badge/License-CC_BY_4.0-lightgrey.svg)](https://creativecommons.org/licenses/by/4.0/)|
| sonar | [link](documentation/README-sonar.md) | historical newspapers | de | NERC-Coarse, EL | [SoNAR](https://sonar.fh-potsdam.de/) | [![License: CC BY 4.0](https://img.shields.io/badge/License-CC_BY_4.0-lightgrey.svg)](https://creativecommons.org/licenses/by/4.0/)|
## BibTeX entry and citation info
## Usage
Here is an example of generation for Wikipedia page disambiguation:
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("impresso-project/nel-historic-multilingual")
model = AutoModelForSeq2SeqLM.from_pretrained("impresso-project/nel-historic-multilingual").eval()
sentences = ["[START] United Press [END] - On the home front, the British populace remains steadfast in the face of ongoing air raids.",
"In [START] London [END], trotz der Zerstörung, ist der Geist der Menschen ungebrochen, mit Freiwilligen und zivilen Verteidigungseinheiten, die unermüdlich arbeiten, um die Kriegsanstrengungen zu unterstützen.",
"Les rapports des correspondants de la [START] AFP [END] mettent en lumière la poussée nationale pour augmenter la production dans les usines, essentielle pour fournir au front les matériaux nécessaires à la victoire."]
for sentence in sentences:
outputs = model.generate(
**tokenizer([sentence], return_tensors="pt"),
num_beams=5,
num_return_sequences=5
)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
```
which outputs the following top-5 predictions (using constrained beam search)
```
['United Press International >> en ', 'The United Press International >> en ', 'United Press International >> de ', 'United Press >> en ', 'Associated Press >> en ']
['London >> de ', 'London >> de ', 'London >> de ', 'Stadt London >> de ', 'Londonderry >> de ']
['Agence France-Presse >> fr ', 'Agence France-Presse >> fr ', 'Agence France-Presse de la Presse écrite >> fr ', 'Agence France-Presse de la porte de Vincennes >> fr ', 'Agence France-Presse de la porte océanique >> fr ']
```
Example with simulated OCR noise:
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("impresso-project/nel-historic-multilingual")
model = AutoModelForSeq2SeqLM.from_pretrained("impresso-project/nel-historic-multilingual").eval()
sentences = ["[START] Un1ted Press [END] - On the h0me fr0nt, the British p0pulace remains steadfast in the f4ce of 0ngoing air raids.",
"In [START] Lon6on [END], trotz d3r Zerstörung, ist der Geist der M3nschen ungeb4ochen, mit Freiwilligen und zivilen Verteidigungseinheiten, die unermüdlich arbeiten, um die Kriegsanstrengungen zu unterstützen.",
"Les rapports des correspondants de la [START] AFP [END] mettent en lumiére la poussée nationale pour augmenter la production dans les usines, essentielle pour fournir au front les matériaux nécessaires à la victoire."]
for sentence in sentences:
outputs = model.generate(
**tokenizer([sentence], return_tensors="pt"),
num_beams=5,
num_return_sequences=5
)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
```
```
['United Press International >> en ', 'Un1ted Press >> en ', 'Joseph Bradley Varnum >> en ', 'The Press >> en ', 'The Unused Press >> en ']
['London >> de ', 'Longbourne >> de ', 'Longbon >> de ', 'Longston >> de ', 'Lyon >> de ']
['Agence France-Presse >> fr ', 'Agence France-Presse >> fr ', 'Agence France-Presse de la Presse écrite >> fr ', 'Agence France-Presse de la porte de Vincennes >> fr ', 'Agence France-Presse de la porte océanique >> fr ']
```
---
license: agpl-3.0
---
|