nel-mgenre-multilingual / generic_nel.py
Emanuela Boros
added confidence
987f96d
raw
history blame
6.64 kB
from transformers import Pipeline
import nltk
import requests
import torch
nltk.download("averaged_perceptron_tagger")
nltk.download("averaged_perceptron_tagger_eng")
NEL_MODEL = "nel-mgenre-multilingual"
def get_wikipedia_page_props(input_str: str):
"""
Retrieves the QID for a given Wikipedia page name from the specified language Wikipedia.
If the request fails, it falls back to using the OpenRefine Wikidata API.
Args:
input_str (str): The input string in the format "page_name >> language".
Returns:
str: The QID or "NIL" if the QID is not found.
"""
try:
# Preprocess the input string
page_name, language = input_str.split(" >> ")
page_name = page_name.strip()
language = language.strip()
except ValueError:
return "Invalid input format. Use 'page_name >> language'."
wikipedia_url = f"https://{language}.wikipedia.org/w/api.php"
wikipedia_params = {
"action": "query",
"prop": "pageprops",
"format": "json",
"titles": page_name,
}
qid = "NIL"
try:
# Attempt to fetch from Wikipedia API
response = requests.get(wikipedia_url, params=wikipedia_params)
response.raise_for_status()
data = response.json()
if "pages" in data["query"]:
page_id = list(data["query"]["pages"].keys())[0]
if "pageprops" in data["query"]["pages"][page_id]:
page_props = data["query"]["pages"][page_id]["pageprops"]
if "wikibase_item" in page_props:
return page_props["wikibase_item"]
else:
return qid
else:
return qid
except Exception as e:
return qid
def get_wikipedia_title(qid, language="en"):
url = f"https://www.wikidata.org/w/api.php"
params = {
"action": "wbgetentities",
"format": "json",
"ids": qid,
"props": "sitelinks/urls",
"sitefilter": f"{language}wiki",
}
response = requests.get(url, params=params)
data = response.json()
try:
title = data["entities"][qid]["sitelinks"][f"{language}wiki"]["title"]
url = data["entities"][qid]["sitelinks"][f"{language}wiki"]["url"]
return title, url
except KeyError:
return "NIL", "None"
class NelPipeline(Pipeline):
def _sanitize_parameters(self, **kwargs):
preprocess_kwargs = {}
if "text" in kwargs:
preprocess_kwargs["text"] = kwargs["text"]
return preprocess_kwargs, {}, {}
def preprocess(self, text, **kwargs):
# Extract the entity between [START] and [END]
start_token = "[START]"
end_token = "[END]"
if start_token in text and end_token in text:
start_idx = text.index(start_token) + len(start_token)
end_idx = text.index(end_token)
enclosed_entity = text[start_idx:end_idx].strip()
lOffset = start_idx # left offset (start of the entity)
rOffset = end_idx # right offset (end of the entity)
else:
enclosed_entity = None
lOffset = None
rOffset = None
# Generate predictions using the model
outputs = self.model.generate(
**self.tokenizer([text], return_tensors="pt").to(self.device),
num_beams=1,
num_return_sequences=1,
max_new_tokens=30,
return_dict_in_generate=True,
output_scores=True,
)
# print(outputs)
token_ids, scores = outputs.sequences, outputs.scores
# Decode the predictions into readable text
wikipedia_predictions = self.tokenizer.batch_decode(
outputs.sequences, skip_special_tokens=True
)
# Process the scores for each token
all_probabilities = []
import torch.nn.functional as F
print(type(scores))
# # Process each score (logits for the generated tokens)
# for i, score in enumerate(scores):
# # Apply softmax to convert logits into probabilities
# probabilities = F.softmax(score, dim=-1)
#
# # Get the probabilities for the top tokens
# top_probabilities = (
# probabilities.cpu().numpy()
# ) # Move to CPU and convert to NumPy
#
# # Store the probabilities
# all_probabilities.append(top_probabilities)
# print(f"Top probabilities: {top_probabilities}")
#
# # Convert probabilities into percentages if needed
# percentages = [(prob * 100.0).tolist() for prob in all_probabilities]
# Return the predictions along with the extracted entity, lOffset, and rOffset
return wikipedia_predictions, enclosed_entity, lOffset, rOffset, percentages
def _forward(self, inputs):
return inputs
def postprocess(self, outputs, **kwargs):
"""
Postprocess the outputs of the model
:param outputs:
:param kwargs:
:return:
"""
# {
# "surface": sentences[i].split("[START]")[1].split("[END]")[0],
# "lOffset": lOffset,
# "rOffset": rOffset,
# "type": "UNK",
# "id": f"{lOffset}:{rOffset}:{surface}:{NEL_MODEL}",
# "wkd_id": get_wikipedia_page_props(wikipedia_titles[i * 2]),
# "wkpedia_pagename": wikipedia_titles[
# i * 2
# ], # This can be improved with a real API call to get the QID
# "confidence_nel": np.round(percentages[i], 2),
# }
wikipedia_predictions, enclosed_entity, lOffset, rOffset, percentages = outputs
results = []
for idx, wikipedia_name in enumerate(wikipedia_predictions):
# Get QID
qid = get_wikipedia_page_props(wikipedia_name)
# print(f"{wikipedia_name} -- QID: {qid}")
# Get Wikipedia title and URL
wkpedia_pagename, url = get_wikipedia_title(qid)
results.append(
{
# "id": f"{lOffset}:{rOffset}:{enclosed_entity}:{NEL_MODEL}",
"surface": enclosed_entity,
"wkpedia_pagename": wkpedia_pagename,
"wkd_id": qid,
"url": url,
"type": "UNK",
"confidence_nel": percentages[idx],
"lOffset": lOffset,
"rOffset": rOffset,
}
)
return results