emanuelaboros
commited on
Commit
•
6ff6c37
1
Parent(s):
9f3ce07
Create handler.py
Browse files- handler.py +164 -0
handler.py
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
+
from typing import List, Dict, Any
|
4 |
+
import requests
|
5 |
+
import nltk
|
6 |
+
|
7 |
+
# Download required NLTK models
|
8 |
+
nltk.download("averaged_perceptron_tagger")
|
9 |
+
nltk.download("averaged_perceptron_tagger_eng")
|
10 |
+
|
11 |
+
# Define your model name
|
12 |
+
NEL_MODEL = "nel-mgenre-multilingual"
|
13 |
+
|
14 |
+
class NelPipeline:
|
15 |
+
def __init__(self, model_name: str):
|
16 |
+
self.model_name = model_name
|
17 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
19 |
+
self.model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(self.device)
|
20 |
+
|
21 |
+
def preprocess(self, text: str):
|
22 |
+
start_token = "[START]"
|
23 |
+
end_token = "[END]"
|
24 |
+
|
25 |
+
if start_token in text and end_token in text:
|
26 |
+
start_idx = text.index(start_token) + len(start_token)
|
27 |
+
end_idx = text.index(end_token)
|
28 |
+
enclosed_entity = text[start_idx:end_idx].strip()
|
29 |
+
lOffset = start_idx
|
30 |
+
rOffset = end_idx
|
31 |
+
else:
|
32 |
+
enclosed_entity = None
|
33 |
+
lOffset = None
|
34 |
+
rOffset = None
|
35 |
+
|
36 |
+
outputs = self.model.generate(
|
37 |
+
**self.tokenizer([text], return_tensors="pt").to(self.device),
|
38 |
+
num_beams=1,
|
39 |
+
num_return_sequences=1,
|
40 |
+
max_new_tokens=30,
|
41 |
+
return_dict_in_generate=True,
|
42 |
+
output_scores=True,
|
43 |
+
)
|
44 |
+
wikipedia_prediction = self.tokenizer.batch_decode(
|
45 |
+
outputs.sequences, skip_special_tokens=True
|
46 |
+
)[0]
|
47 |
+
|
48 |
+
transition_scores = self.model.compute_transition_scores(
|
49 |
+
outputs.sequences, outputs.scores, normalize_logits=True
|
50 |
+
)
|
51 |
+
log_prob_sum = sum(transition_scores[0])
|
52 |
+
sequence_confidence = torch.exp(log_prob_sum)
|
53 |
+
percentage = sequence_confidence.cpu().numpy() * 100.0
|
54 |
+
|
55 |
+
return wikipedia_prediction, enclosed_entity, lOffset, rOffset, percentage
|
56 |
+
|
57 |
+
def postprocess(self, outputs):
|
58 |
+
wikipedia_prediction, enclosed_entity, lOffset, rOffset, percentage = outputs
|
59 |
+
|
60 |
+
qid, language = get_wikipedia_page_props(wikipedia_prediction)
|
61 |
+
title, url = get_wikipedia_title(qid, language=language)
|
62 |
+
|
63 |
+
results = [
|
64 |
+
{
|
65 |
+
"surface": enclosed_entity,
|
66 |
+
"wkd_id": qid,
|
67 |
+
"wkpedia_pagename": title,
|
68 |
+
"wkpedia_url": url,
|
69 |
+
"type": "UNK",
|
70 |
+
"confidence_nel": round(percentage, 2),
|
71 |
+
"lOffset": lOffset,
|
72 |
+
"rOffset": rOffset,
|
73 |
+
}
|
74 |
+
]
|
75 |
+
return results
|
76 |
+
|
77 |
+
|
78 |
+
def get_wikipedia_page_props(input_str: str):
|
79 |
+
if ">>" not in input_str:
|
80 |
+
page_name = input_str
|
81 |
+
language = "en"
|
82 |
+
else:
|
83 |
+
try:
|
84 |
+
page_name, language = input_str.split(">>")
|
85 |
+
page_name = page_name.strip()
|
86 |
+
language = language.strip()
|
87 |
+
except:
|
88 |
+
page_name = input_str
|
89 |
+
language = "en"
|
90 |
+
wikipedia_url = f"https://{language}.wikipedia.org/w/api.php"
|
91 |
+
wikipedia_params = {
|
92 |
+
"action": "query",
|
93 |
+
"prop": "pageprops",
|
94 |
+
"format": "json",
|
95 |
+
"titles": page_name,
|
96 |
+
}
|
97 |
+
|
98 |
+
qid = "NIL"
|
99 |
+
try:
|
100 |
+
response = requests.get(wikipedia_url, params=wikipedia_params)
|
101 |
+
response.raise_for_status()
|
102 |
+
data = response.json()
|
103 |
+
|
104 |
+
if "pages" in data["query"]:
|
105 |
+
page_id = list(data["query"]["pages"].keys())[0]
|
106 |
+
|
107 |
+
if "pageprops" in data["query"]["pages"][page_id]:
|
108 |
+
page_props = data["query"]["pages"][page_id]["pageprops"]
|
109 |
+
|
110 |
+
if "wikibase_item" in page_props:
|
111 |
+
return page_props["wikibase_item"], language
|
112 |
+
else:
|
113 |
+
return qid, language
|
114 |
+
else:
|
115 |
+
return qid, language
|
116 |
+
else:
|
117 |
+
return qid, language
|
118 |
+
except Exception as e:
|
119 |
+
return qid, language
|
120 |
+
|
121 |
+
|
122 |
+
def get_wikipedia_title(qid, language="en"):
|
123 |
+
url = f"https://www.wikidata.org/w/api.php"
|
124 |
+
params = {
|
125 |
+
"action": "wbgetentities",
|
126 |
+
"format": "json",
|
127 |
+
"ids": qid,
|
128 |
+
"props": "sitelinks/urls",
|
129 |
+
"sitefilter": f"{language}wiki",
|
130 |
+
}
|
131 |
+
|
132 |
+
response = requests.get(url, params=params)
|
133 |
+
try:
|
134 |
+
response.raise_for_status()
|
135 |
+
data = response.json()
|
136 |
+
except requests.exceptions.RequestException as e:
|
137 |
+
return "NIL", "None"
|
138 |
+
except ValueError as e:
|
139 |
+
return "NIL", "None"
|
140 |
+
|
141 |
+
try:
|
142 |
+
title = data["entities"][qid]["sitelinks"][f"{language}wiki"]["title"]
|
143 |
+
url = data["entities"][qid]["sitelinks"][f"{language}wiki"]["url"]
|
144 |
+
return title, url
|
145 |
+
except KeyError:
|
146 |
+
return "NIL", "None"
|
147 |
+
|
148 |
+
|
149 |
+
class EndpointHandler:
|
150 |
+
def __init__(self, path: str = None):
|
151 |
+
# Initialize the NelPipeline with the specified model
|
152 |
+
self.pipeline = NelPipeline(NEL_MODEL)
|
153 |
+
|
154 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
155 |
+
# Process incoming data
|
156 |
+
inputs = data.get("inputs", "")
|
157 |
+
if not isinstance(inputs, str):
|
158 |
+
raise ValueError("Input must be a string.")
|
159 |
+
|
160 |
+
# Preprocess, forward, and postprocess
|
161 |
+
preprocessed = self.pipeline.preprocess(inputs)
|
162 |
+
results = self.pipeline.postprocess(preprocessed)
|
163 |
+
|
164 |
+
return results
|