emanuelaboros
commited on
Commit
·
fc58e46
1
Parent(s):
c381a7f
Upload folder using huggingface_hub
Browse files- MAR-INF/MANIFEST.json +11 -0
- __pycache__/model_handler_nel.cpython-311.pyc +0 -0
- config.json +35 -0
- generation_config.json +8 -0
- model_handler_nel.py +323 -0
- optimizer.pt +3 -0
- pytorch_model.bin +3 -0
- rng_state.pth +3 -0
- scheduler.pt +3 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +15 -0
- tokenizer_config.json +20 -0
- trainer_state.json +194 -0
- training_args.bin +3 -0
MAR-INF/MANIFEST.json
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"createdOn": "06/12/2023 17:03:48",
|
3 |
+
"runtime": "python",
|
4 |
+
"model": {
|
5 |
+
"modelName": "nel",
|
6 |
+
"handler": "model_handler_nel.py",
|
7 |
+
"modelVersion": "1.0",
|
8 |
+
"configFile": "model-config.yaml"
|
9 |
+
},
|
10 |
+
"archiverVersion": "0.8.1"
|
11 |
+
}
|
__pycache__/model_handler_nel.cpython-311.pyc
ADDED
Binary file (14.8 kB). View file
|
|
config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "facebook/mgenre-wiki",
|
3 |
+
"activation_dropout": 0.0,
|
4 |
+
"activation_function": "gelu",
|
5 |
+
"architectures": [
|
6 |
+
"MBartForConditionalGeneration"
|
7 |
+
],
|
8 |
+
"attention_dropout": 0.0,
|
9 |
+
"bos_token_id": 0,
|
10 |
+
"classifier_dropout": 0.0,
|
11 |
+
"d_model": 1024,
|
12 |
+
"decoder_attention_heads": 16,
|
13 |
+
"decoder_ffn_dim": 4096,
|
14 |
+
"decoder_layerdrop": 0.0,
|
15 |
+
"decoder_layers": 12,
|
16 |
+
"decoder_start_token_id": 2,
|
17 |
+
"dropout": 0.1,
|
18 |
+
"encoder_attention_heads": 16,
|
19 |
+
"encoder_ffn_dim": 4096,
|
20 |
+
"encoder_layerdrop": 0.0,
|
21 |
+
"encoder_layers": 12,
|
22 |
+
"eos_token_id": 2,
|
23 |
+
"forced_eos_token_id": 2,
|
24 |
+
"init_std": 0.02,
|
25 |
+
"is_encoder_decoder": true,
|
26 |
+
"max_position_embeddings": 1024,
|
27 |
+
"model_type": "mbart",
|
28 |
+
"num_hidden_layers": 12,
|
29 |
+
"pad_token_id": 1,
|
30 |
+
"scale_embedding": true,
|
31 |
+
"torch_dtype": "float32",
|
32 |
+
"transformers_version": "4.31.0",
|
33 |
+
"use_cache": true,
|
34 |
+
"vocab_size": 256001
|
35 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 0,
|
3 |
+
"decoder_start_token_id": 2,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"forced_eos_token_id": 2,
|
6 |
+
"pad_token_id": 1,
|
7 |
+
"transformers_version": "4.31.0"
|
8 |
+
}
|
model_handler_nel.py
ADDED
@@ -0,0 +1,323 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ts.torch_handler.base_handler import BaseHandler
|
2 |
+
from nltk.chunk import conlltags2tree
|
3 |
+
from nltk import pos_tag
|
4 |
+
from nltk.tree import Tree
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
8 |
+
import json
|
9 |
+
import string
|
10 |
+
# Get the directory of your script
|
11 |
+
import logging
|
12 |
+
import os
|
13 |
+
import sys
|
14 |
+
logger = logging.getLogger(__name__)
|
15 |
+
|
16 |
+
# get the current directory
|
17 |
+
current_directory = os.path.dirname(os.path.realpath(__file__))
|
18 |
+
print(current_directory)
|
19 |
+
# add the current directory to sys.path
|
20 |
+
sys.path.insert(0, current_directory)
|
21 |
+
import pickle
|
22 |
+
def pickle_load(path, verbose=False):
|
23 |
+
if path is None:
|
24 |
+
return None
|
25 |
+
if verbose:
|
26 |
+
print('Loading {}'.format(path))
|
27 |
+
with open(path, "rb") as f:
|
28 |
+
obj = pickle.load(f)
|
29 |
+
return obj
|
30 |
+
|
31 |
+
DEFAULT_MODEL = 'facebook/mgenre-wiki'
|
32 |
+
|
33 |
+
def tokenize(text):
|
34 |
+
# Add a space before and after specified punctuation marks
|
35 |
+
# text = re.sub(r'([,.!?])', r' \1 ', text)
|
36 |
+
# Split the text into tokens
|
37 |
+
tokens = text.split()
|
38 |
+
return tokens
|
39 |
+
|
40 |
+
logger.info(f'Loading title2wikidataID')
|
41 |
+
lang_title2wikidataID_path = "lang_title2wikidataID-normalized_with_redirect.pkl"
|
42 |
+
lang_title2wikidataID = pickle_load(
|
43 |
+
lang_title2wikidataID_path, verbose=True)
|
44 |
+
|
45 |
+
def text_to_id(x):
|
46 |
+
return max(lang_title2wikidataID[tuple(
|
47 |
+
reversed([y.strip() for y in x.split(" >> ")]))], key=lambda y: int(y[1:]))
|
48 |
+
|
49 |
+
"""
|
50 |
+
Method for retrieving the Qid
|
51 |
+
"""
|
52 |
+
|
53 |
+
def get_wikidata_qid(wikipedia_titles, scores):
|
54 |
+
qid = 'NIL'
|
55 |
+
wikipedia_title = wikipedia_titles[0]
|
56 |
+
score = scores[0]
|
57 |
+
for idx, title in enumerate(
|
58 |
+
wikipedia_titles):
|
59 |
+
try:
|
60 |
+
qid = text_to_id(title)
|
61 |
+
wikipedia_title = wikipedia_titles[idx]
|
62 |
+
score = scores[idx]
|
63 |
+
return qid, wikipedia_title, score
|
64 |
+
except BaseException:
|
65 |
+
qid = 'NIL'
|
66 |
+
return qid, wikipedia_title, score
|
67 |
+
|
68 |
+
|
69 |
+
def get_entities(tokens, preds_list_coarse, preds_list_fine, coarse_confidences, fine_confidences):
|
70 |
+
tags_coarse = [tag.replace('S-', 'B-').replace('E-', 'I-') for tag in preds_list_coarse]
|
71 |
+
tags_fine = [tag.replace('S-', 'B-').replace('E-', 'I-') for tag in preds_list_fine]
|
72 |
+
pos_tags = [pos for token, pos in pos_tag(tokens)]
|
73 |
+
|
74 |
+
conll_coarse_tags = [(token, pos, tg)
|
75 |
+
for token, pos, tg in zip(tokens, pos_tags, tags_coarse)]
|
76 |
+
conll_fine_tags = [(token, pos, tg)
|
77 |
+
for token, pos, tg in zip(tokens, pos_tags, tags_fine)]
|
78 |
+
|
79 |
+
ne_tree_coarse = conlltags2tree(conll_coarse_tags)
|
80 |
+
ne_tree_fine = conlltags2tree(conll_fine_tags)
|
81 |
+
|
82 |
+
coarse_entities = get_entities_from_tree(ne_tree_coarse, coarse_confidences)
|
83 |
+
fine_entities = get_entities_from_tree(ne_tree_fine, fine_confidences)
|
84 |
+
return coarse_entities, fine_entities
|
85 |
+
|
86 |
+
|
87 |
+
def logarithmic_scaling(confidence_score):
|
88 |
+
return np.log(confidence_score + 1e-10) # Adding a small value to avoid log(0)
|
89 |
+
|
90 |
+
|
91 |
+
def classify_confidence(confidence_score):
|
92 |
+
return int(confidence_score * 100.0)
|
93 |
+
# TypeError: Object of type float32 is not JSON serializable
|
94 |
+
# if confidence_score > 0.95:
|
95 |
+
# return 'high'
|
96 |
+
# elif confidence_score > 0.75:
|
97 |
+
# return 'medium'
|
98 |
+
# else:
|
99 |
+
# return 'low'
|
100 |
+
|
101 |
+
def get_entities_from_tree(ne_tree, token_confidences):
|
102 |
+
entities = []
|
103 |
+
idx = 0
|
104 |
+
char_position = 0 # This will hold the current character position
|
105 |
+
|
106 |
+
for subtree in ne_tree:
|
107 |
+
# skipping 'O' tags
|
108 |
+
if isinstance(subtree, Tree):
|
109 |
+
original_label = subtree.label()
|
110 |
+
original_string = " ".join(
|
111 |
+
[token for token, pos in subtree.leaves()])
|
112 |
+
|
113 |
+
# original_string = reconstruct_text([token for token, pos in subtree.leaves()])
|
114 |
+
|
115 |
+
entity_start_position = char_position
|
116 |
+
entity_end_position = entity_start_position + len(original_string)
|
117 |
+
|
118 |
+
confidences = token_confidences[idx:idx + len(subtree)]
|
119 |
+
# Compute the average confidence
|
120 |
+
avg_confidence = sum(confidences) / len(confidences)
|
121 |
+
print(original_string, '- confidence -', token_confidences[idx:idx + len(subtree)], '- avg -',
|
122 |
+
avg_confidence, classify_confidence(avg_confidence), '- label -', original_label)
|
123 |
+
|
124 |
+
entities.append(
|
125 |
+
(original_string,
|
126 |
+
original_label,
|
127 |
+
(idx,
|
128 |
+
idx + len(subtree)),
|
129 |
+
(entity_start_position,
|
130 |
+
entity_end_position),
|
131 |
+
classify_confidence(avg_confidence)))
|
132 |
+
|
133 |
+
idx += len(subtree)
|
134 |
+
|
135 |
+
# Update the current character position
|
136 |
+
# We add the length of the original string + 1 (for the space)
|
137 |
+
char_position += len(original_string) + 1
|
138 |
+
else:
|
139 |
+
token, pos = subtree
|
140 |
+
# If it's not a named entity, we still need to update the character
|
141 |
+
# position
|
142 |
+
char_position += len(token) + 1 # We add 1 for the space
|
143 |
+
idx += 1
|
144 |
+
return entities
|
145 |
+
|
146 |
+
|
147 |
+
def realign(
|
148 |
+
text_sentence,
|
149 |
+
tokens_coarse_result,
|
150 |
+
tokens_fine_result,
|
151 |
+
coarse_confidences,
|
152 |
+
fine_confidences,
|
153 |
+
tokenizer,
|
154 |
+
language,
|
155 |
+
nerc_coarse_label_map,
|
156 |
+
nerc_fine_label_map):
|
157 |
+
|
158 |
+
preds_list_coarse, preds_list_fine, words_list, coarse_confidences_list, fine_confidences_list = [], [], [], [], []
|
159 |
+
word_ids = tokenizer(text_sentence, is_split_into_words=True).word_ids()
|
160 |
+
|
161 |
+
for idx, word in enumerate(text_sentence):
|
162 |
+
try:
|
163 |
+
beginning_index = word_ids.index(idx)
|
164 |
+
preds_list_coarse.append(nerc_coarse_label_map[tokens_coarse_result[beginning_index]])
|
165 |
+
preds_list_fine.append(nerc_fine_label_map[tokens_fine_result[beginning_index]])
|
166 |
+
|
167 |
+
coarse_confidences_list.append(coarse_confidences[beginning_index])
|
168 |
+
fine_confidences_list.append(fine_confidences[beginning_index])
|
169 |
+
|
170 |
+
except Exception as ex: # the sentence was longer then max_length
|
171 |
+
preds_list_coarse.append('O')
|
172 |
+
preds_list_fine.append('O')
|
173 |
+
|
174 |
+
coarse_confidences_list.append(1.0)
|
175 |
+
fine_confidences_list.append(1.0)
|
176 |
+
|
177 |
+
words_list.append(word)
|
178 |
+
|
179 |
+
return words_list, preds_list_coarse, preds_list_fine, coarse_confidences_list, fine_confidences_list
|
180 |
+
|
181 |
+
import os
|
182 |
+
|
183 |
+
|
184 |
+
|
185 |
+
class NewsAgencyHandler(BaseHandler):
|
186 |
+
def __init__(self):
|
187 |
+
super().__init__()
|
188 |
+
self.model = None
|
189 |
+
self.tokenizer = None
|
190 |
+
self.device = None
|
191 |
+
|
192 |
+
def initialize(self, ctx):
|
193 |
+
# boilerplate
|
194 |
+
properties = ctx.system_properties
|
195 |
+
self.map_location = "cuda" if torch.cuda.is_available() else "cpu"
|
196 |
+
|
197 |
+
self.device = torch.device(self.map_location + ":" + str(
|
198 |
+
properties.get("gpu_id")) if torch.cuda.is_available() else self.map_location)
|
199 |
+
|
200 |
+
# self.manifest = ctx.manifest
|
201 |
+
# model_dir is the inside of your archive!
|
202 |
+
# extra-files are in this dir.
|
203 |
+
|
204 |
+
|
205 |
+
model_name = ctx.model_yaml_config["handler"]["model_name"]
|
206 |
+
logger.info("Model %s loading tokenizer", model_name)
|
207 |
+
|
208 |
+
# serialized_file = self.manifest["model"]["serializedFile"]
|
209 |
+
|
210 |
+
# self.tokenizer = AutoTokenizer.from_pretrained(
|
211 |
+
# model_dir, local_files_only=True)
|
212 |
+
#
|
213 |
+
# # Loading the model and tokenizer from checkpoint and config files based on the user's choice of mode
|
214 |
+
# # further setup config can be added.
|
215 |
+
logger.error(f'getcwd: {os.getcwd()}')
|
216 |
+
logger.error(f'__file__: {__file__}')
|
217 |
+
logger.error(f'Model: {model_name}')
|
218 |
+
logger.error(f'Device: {self.device}')
|
219 |
+
#
|
220 |
+
# save_mode = "pretrained"
|
221 |
+
#
|
222 |
+
# if save_mode == "torchscript":
|
223 |
+
# self.model = torch.jit.load(serialized_file)
|
224 |
+
# elif save_mode == "pretrained":
|
225 |
+
# model_dir = properties.get("model_dir")
|
226 |
+
# serialized_file = self.manifest["model"]["serializedFile"]
|
227 |
+
# self.tokenizer = AutoTokenizer.from_pretrained(
|
228 |
+
# model_dir, local_files_only=True)
|
229 |
+
#
|
230 |
+
# self.model = torch.jit.load(serialized_file, map_location=self.device)
|
231 |
+
#
|
232 |
+
# self.model.to(self.device)
|
233 |
+
# self.model.eval()
|
234 |
+
|
235 |
+
self.model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
236 |
+
# self.model = torch.nn.DataParallel(self.model)
|
237 |
+
|
238 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
239 |
+
|
240 |
+
# else:
|
241 |
+
# logger.warning("Missing the checkpoint or state_dict.")
|
242 |
+
self.model.to(self.map_location)
|
243 |
+
self.model.eval()
|
244 |
+
logger.info("Transformer model from path %s loaded successfully", model_name)
|
245 |
+
|
246 |
+
def preprocess(self, requests):
|
247 |
+
logger.info(f'Preprocessing requests {len(requests)}')
|
248 |
+
|
249 |
+
data = requests[0]
|
250 |
+
text_sentences = []
|
251 |
+
|
252 |
+
# The request should have the text:
|
253 |
+
# THE next MEETLNG of the TRITSTEE, will be held at the [START] LONDON HOTEL [END] in POOLE, on ldomaT,
|
254 |
+
# the 12th day or MARCH next. at 12 oClock at Noon
|
255 |
+
|
256 |
+
for item in data['body']:
|
257 |
+
item = json.loads(item)
|
258 |
+
text = item['text']
|
259 |
+
text_sentences.append(text)
|
260 |
+
language = item['language']
|
261 |
+
# print('Doc id:', item['doc_id'])
|
262 |
+
# print('-----Text', text, type(text))
|
263 |
+
# print('-----Language', language)
|
264 |
+
|
265 |
+
return text_sentences, language
|
266 |
+
|
267 |
+
def inference(self, inputs):
|
268 |
+
|
269 |
+
text_sentences, language = inputs
|
270 |
+
|
271 |
+
tokens_coarse_results, tokens_fine_results = [], []
|
272 |
+
tokens_coarse_confidences, tokens_fine_confidences = [], []
|
273 |
+
|
274 |
+
qids = []
|
275 |
+
with torch.no_grad():
|
276 |
+
for sentence in text_sentences:
|
277 |
+
|
278 |
+
sentences = [sentence]
|
279 |
+
|
280 |
+
# logger.error(f'Device: {self.device}')
|
281 |
+
|
282 |
+
outputs = self.model.generate(
|
283 |
+
**self.tokenizer(sentences, return_tensors="pt").to(self.device),
|
284 |
+
num_beams=5,
|
285 |
+
num_return_sequences=5,
|
286 |
+
return_dict_in_generate=True,
|
287 |
+
output_scores=True)
|
288 |
+
|
289 |
+
token_ids, scores = outputs['sequences'], outputs['sequences_scores']
|
290 |
+
wikipedia_titles = self.tokenizer.batch_decode(token_ids, skip_special_tokens=True)
|
291 |
+
|
292 |
+
# Example log-likelihoods (scores)
|
293 |
+
log_likelihoods = torch.tensor(scores)
|
294 |
+
|
295 |
+
# Convert log-likelihoods to "probabilities" (not true probabilities)
|
296 |
+
probabilities = torch.exp(log_likelihoods)
|
297 |
+
|
298 |
+
# Normalize these probabilities so they sum to 1
|
299 |
+
normalized_probabilities = probabilities / torch.sum(probabilities)
|
300 |
+
|
301 |
+
# Convert to percentages
|
302 |
+
percentages = normalized_probabilities * 100
|
303 |
+
|
304 |
+
qid, wikipedia_title, score = get_wikidata_qid(wikipedia_titles, percentages)
|
305 |
+
percentage_score = int(score)
|
306 |
+
|
307 |
+
# logger.info(f"Model prediction: {wikipedia_titles} {qid}, {wikipedia_title}, {score}, "
|
308 |
+
# f"---- {percentage_score}")
|
309 |
+
|
310 |
+
qids.append({'qid': qid, 'wikipedia_title': wikipedia_title, 'score': percentage_score})
|
311 |
+
# logger.info('-' * 100)
|
312 |
+
|
313 |
+
return qids, text_sentences, language
|
314 |
+
|
315 |
+
def postprocess(self, outputs):
|
316 |
+
# postprocess the outputs here, for example, convert predictions to labels
|
317 |
+
|
318 |
+
qids, text_sentences, language = outputs
|
319 |
+
|
320 |
+
logger.info(f'Result NEL: {qids}')
|
321 |
+
|
322 |
+
return [[qids]]
|
323 |
+
|
optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c82be96aaccda634f8070e3b99cc8f4e74059ceae0562f43b8d88c2151d7050e
|
3 |
+
size 4936064811
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2b3a2cc84b5557d70fcb9e55dfda9ab2f94faa27bf1d18cc54aab6e95a2e3200
|
3 |
+
size 2469076765
|
rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5b856bbb62b6a458ccdf5042ed253e3a935d7082ea4a9b9dcd51e72facf2510f
|
3 |
+
size 14575
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:08d8da819fd0b4e7c292d859bdbe164715dec0253457d3967452b528c4c3f3ce
|
3 |
+
size 627
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6ee4dc054a17c18fe81f76c0b1cda00e9fc1cfd9e0f1a16cb6d77009e2076653
|
3 |
+
size 4870365
|
special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": {
|
6 |
+
"content": "<mask>",
|
7 |
+
"lstrip": true,
|
8 |
+
"normalized": true,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"pad_token": "<pad>",
|
13 |
+
"sep_token": "</s>",
|
14 |
+
"unk_token": "<unk>"
|
15 |
+
}
|
tokenizer_config.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"clean_up_tokenization_spaces": true,
|
4 |
+
"cls_token": "<s>",
|
5 |
+
"eos_token": "</s>",
|
6 |
+
"mask_token": {
|
7 |
+
"__type": "AddedToken",
|
8 |
+
"content": "<mask>",
|
9 |
+
"lstrip": true,
|
10 |
+
"normalized": true,
|
11 |
+
"rstrip": false,
|
12 |
+
"single_word": false
|
13 |
+
},
|
14 |
+
"model_max_length": 512,
|
15 |
+
"pad_token": "<pad>",
|
16 |
+
"sep_token": "</s>",
|
17 |
+
"sp_model_kwargs": {},
|
18 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
19 |
+
"unk_token": "<unk>"
|
20 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 7.377049180327869,
|
5 |
+
"global_step": 9000,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.41,
|
12 |
+
"learning_rate": 1.918032786885246e-05,
|
13 |
+
"loss": 1.0017,
|
14 |
+
"step": 500
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.82,
|
18 |
+
"learning_rate": 1.836065573770492e-05,
|
19 |
+
"loss": 0.0813,
|
20 |
+
"step": 1000
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 1.0,
|
24 |
+
"eval_bleu": 0.0,
|
25 |
+
"eval_gen_len": 9.8363,
|
26 |
+
"eval_loss": 0.11947569251060486,
|
27 |
+
"eval_runtime": 48.7643,
|
28 |
+
"eval_samples_per_second": 41.957,
|
29 |
+
"eval_steps_per_second": 0.656,
|
30 |
+
"step": 1220
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 1.23,
|
34 |
+
"learning_rate": 1.7540983606557377e-05,
|
35 |
+
"loss": 0.0534,
|
36 |
+
"step": 1500
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"epoch": 1.64,
|
40 |
+
"learning_rate": 1.6721311475409837e-05,
|
41 |
+
"loss": 0.038,
|
42 |
+
"step": 2000
|
43 |
+
},
|
44 |
+
{
|
45 |
+
"epoch": 2.0,
|
46 |
+
"eval_bleu": 0.0,
|
47 |
+
"eval_gen_len": 9.8495,
|
48 |
+
"eval_loss": 0.126708522439003,
|
49 |
+
"eval_runtime": 51.3358,
|
50 |
+
"eval_samples_per_second": 39.855,
|
51 |
+
"eval_steps_per_second": 0.623,
|
52 |
+
"step": 2440
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"epoch": 2.05,
|
56 |
+
"learning_rate": 1.5901639344262295e-05,
|
57 |
+
"loss": 0.0347,
|
58 |
+
"step": 2500
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 2.46,
|
62 |
+
"learning_rate": 1.5081967213114754e-05,
|
63 |
+
"loss": 0.0187,
|
64 |
+
"step": 3000
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"epoch": 2.87,
|
68 |
+
"learning_rate": 1.4262295081967214e-05,
|
69 |
+
"loss": 0.0198,
|
70 |
+
"step": 3500
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"epoch": 3.0,
|
74 |
+
"eval_bleu": 0.0,
|
75 |
+
"eval_gen_len": 9.8822,
|
76 |
+
"eval_loss": 0.13768209517002106,
|
77 |
+
"eval_runtime": 49.8051,
|
78 |
+
"eval_samples_per_second": 41.08,
|
79 |
+
"eval_steps_per_second": 0.643,
|
80 |
+
"step": 3660
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 3.28,
|
84 |
+
"learning_rate": 1.3442622950819673e-05,
|
85 |
+
"loss": 0.0134,
|
86 |
+
"step": 4000
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 3.69,
|
90 |
+
"learning_rate": 1.2622950819672132e-05,
|
91 |
+
"loss": 0.0108,
|
92 |
+
"step": 4500
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 4.0,
|
96 |
+
"eval_bleu": 0.0,
|
97 |
+
"eval_gen_len": 9.9233,
|
98 |
+
"eval_loss": 0.15018606185913086,
|
99 |
+
"eval_runtime": 50.7382,
|
100 |
+
"eval_samples_per_second": 40.325,
|
101 |
+
"eval_steps_per_second": 0.631,
|
102 |
+
"step": 4880
|
103 |
+
},
|
104 |
+
{
|
105 |
+
"epoch": 4.1,
|
106 |
+
"learning_rate": 1.1803278688524591e-05,
|
107 |
+
"loss": 0.0099,
|
108 |
+
"step": 5000
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 4.51,
|
112 |
+
"learning_rate": 1.0983606557377052e-05,
|
113 |
+
"loss": 0.0065,
|
114 |
+
"step": 5500
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 4.92,
|
118 |
+
"learning_rate": 1.0163934426229509e-05,
|
119 |
+
"loss": 0.0067,
|
120 |
+
"step": 6000
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"epoch": 5.0,
|
124 |
+
"eval_bleu": 0.0,
|
125 |
+
"eval_gen_len": 9.8421,
|
126 |
+
"eval_loss": 0.1598789393901825,
|
127 |
+
"eval_runtime": 51.4429,
|
128 |
+
"eval_samples_per_second": 39.772,
|
129 |
+
"eval_steps_per_second": 0.622,
|
130 |
+
"step": 6100
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"epoch": 5.33,
|
134 |
+
"learning_rate": 9.344262295081968e-06,
|
135 |
+
"loss": 0.0051,
|
136 |
+
"step": 6500
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 5.74,
|
140 |
+
"learning_rate": 8.524590163934427e-06,
|
141 |
+
"loss": 0.0045,
|
142 |
+
"step": 7000
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 6.0,
|
146 |
+
"eval_bleu": 0.0,
|
147 |
+
"eval_gen_len": 9.8827,
|
148 |
+
"eval_loss": 0.16899947822093964,
|
149 |
+
"eval_runtime": 50.0655,
|
150 |
+
"eval_samples_per_second": 40.866,
|
151 |
+
"eval_steps_per_second": 0.639,
|
152 |
+
"step": 7320
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 6.15,
|
156 |
+
"learning_rate": 7.704918032786886e-06,
|
157 |
+
"loss": 0.0043,
|
158 |
+
"step": 7500
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 6.56,
|
162 |
+
"learning_rate": 6.885245901639345e-06,
|
163 |
+
"loss": 0.0035,
|
164 |
+
"step": 8000
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 6.97,
|
168 |
+
"learning_rate": 6.065573770491804e-06,
|
169 |
+
"loss": 0.0036,
|
170 |
+
"step": 8500
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 7.0,
|
174 |
+
"eval_bleu": 0.0,
|
175 |
+
"eval_gen_len": 9.8832,
|
176 |
+
"eval_loss": 0.17745506763458252,
|
177 |
+
"eval_runtime": 50.7877,
|
178 |
+
"eval_samples_per_second": 40.285,
|
179 |
+
"eval_steps_per_second": 0.63,
|
180 |
+
"step": 8540
|
181 |
+
},
|
182 |
+
{
|
183 |
+
"epoch": 7.38,
|
184 |
+
"learning_rate": 5.245901639344263e-06,
|
185 |
+
"loss": 0.0028,
|
186 |
+
"step": 9000
|
187 |
+
}
|
188 |
+
],
|
189 |
+
"max_steps": 12200,
|
190 |
+
"num_train_epochs": 10,
|
191 |
+
"total_flos": 5.951675547814134e+17,
|
192 |
+
"trial_name": null,
|
193 |
+
"trial_params": null
|
194 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7e2dbcc7f012329fe991ba44783e188cc8f597ec80ff4744a0259bdb6e0c316a
|
3 |
+
size 4155
|