--- language: - multilingual - af - am - ar - as - az - be - bg - bm - bn - br - bs - ca - cs - cy - da - de - el - en - eo - es - et - eu - fa - ff - fi - fr - fy - ga - gd - gl - gn - gu - ha - he - hi - hr - ht - hu - hy - id - ig - is - it - ja - jv - ka - kg - kk - km - kn - ko - ku - ky - la - lg - ln - lo - lt - lv - mg - mk - ml - mn - mr - ms - my - ne - nl - no - om - or - pa - pl - ps - pt - qu - ro - ru - sa - sd - si - sk - sl - so - sq - sr - ss - su - sv - sw - ta - te - th - ti - tl - tn - tr - uk - ur - uz - vi - wo - xh - yo - zh tags: - retrieval - entity-retrieval - named-entity-disambiguation - entity-disambiguation - named-entity-linking - entity-linking - text2text-generation --- # mGENRE The mGENRE (multilingual Generative ENtity REtrieval) system as presented in [Multilingual Autoregressive Entity Linking](https://arxiv.org/abs/2103.12528) implemented in pytorch. In a nutshell, mGENRE uses a sequence-to-sequence approach to entity retrieval (e.g., linking), based on fine-tuned [mBART](https://arxiv.org/abs/2001.08210) architecture. GENRE performs retrieval generating the unique entity name conditioned on the input text using constrained beam search to only generate valid identifiers. The model was first released in the [facebookresearch/GENRE](https://github.com/facebookresearch/GENRE) repository using `fairseq` (the `transformers` models are obtained with a conversion script similar to [this](https://github.com/huggingface/transformers/blob/master/src/transformers/models/bart/convert_bart_original_pytorch_checkpoint_to_pytorch.py). This model was trained on 105 languages from Wikipedia. ## BibTeX entry and citation info **Please consider citing our works if you use code from this repository.** ```bibtex @article{decao2020multilingual, author = {De Cao, Nicola and Wu, Ledell and Popat, Kashyap and Artetxe, Mikel and Goyal, Naman and Plekhanov, Mikhail and Zettlemoyer, Luke and Cancedda, Nicola and Riedel, Sebastian and Petroni, Fabio}, title = "{Multilingual Autoregressive Entity Linking}", journal = {Transactions of the Association for Computational Linguistics}, volume = {10}, pages = {274-290}, year = {2022}, month = {03}, issn = {2307-387X}, doi = {10.1162/tacl_a_00460}, url = {https://doi.org/10.1162/tacl\_a\_00460}, eprint = {https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl\_a\_00460/2004070/tacl\_a\_00460.pdf}, } ``` ## Usage Here is an example of generation for Wikipedia page disambiguation: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("impresso-project/nel-historic-multilingual") model = AutoModelForSeq2SeqLM.from_pretrained("impresso-project/nel-historic-multilingual").eval() sentences = ["[START] United Press [END] - On the home front, the British populace remains steadfast in the face of ongoing air raids. In [START] London [END], despite the destruction, the spirit of the people is unbroken, with volunteers and civil defense units working tirelessly to support the war effort. Reports from [START] BUP [START]correspondents highlight the nationwide push for increased production in factories, essential for supplying the front lines with the materials needed for victory. "] outputs = model.generate( **tokenizer(sentences, return_tensors="pt"), num_beams=5, num_return_sequences=5 ) tokenizer.batch_decode(outputs, skip_special_tokens=True) ``` which outputs the following top-5 predictions (using constrained beam search) ``` ['Albert Einstein >> it', 'Albert Einstein (disambiguation) >> en', 'Alfred Einstein >> it', 'Alberto Einstein >> it', 'Einstein >> it'] ``` --- license: agpl-3.0 ---