File size: 5,905 Bytes
4fd1faf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
from transformers import Pipeline
import numpy as np
import torch
from nltk.chunk import conlltags2tree
from nltk import pos_tag
from nltk.tree import Tree
import string
import torch.nn.functional as F
import re
from models import ExtendedMultitaskModelForTokenClassification

# Register the custom pipeline
from transformers import pipeline


def tokenize(text):
    # print(text)
    for punctuation in string.punctuation:
        text = text.replace(punctuation, " " + punctuation + " ")
    return text.split()


def find_entity_indices(article, entity):
    """
    Find all occurrences of an entity in the article and return their indices.

    :param article: The complete article text.
    :param entity: The entity to search for.
    :return: A list of tuples (lArticleOffset, rArticleOffset) for each occurrence.
    """

    # normalized_target = normalize_text(entity)
    # normalized_document = normalize_text(article)

    entity_indices = []
    for match in re.finditer(re.escape(entity), article):
        start_idx = match.start()
        end_idx = match.end()
        entity_indices.append((start_idx, end_idx))

    return entity_indices


def get_entities(tokens, tags, confidences, text):

    tags = [tag.replace("S-", "B-").replace("E-", "I-") for tag in tags]
    pos_tags = [pos for token, pos in pos_tag(tokens)]

    conlltags = [(token, pos, tg) for token, pos, tg in zip(tokens, pos_tags, tags)]
    ne_tree = conlltags2tree(conlltags)

    entities = []
    idx: int = 0

    for subtree in ne_tree:
        # skipping 'O' tags
        if isinstance(subtree, Tree):
            original_label = subtree.label()
            original_string = " ".join([token for token, pos in subtree.leaves()])

            for indices in find_entity_indices(text, original_string):
                entity_start_position = indices[0]
                entity_end_position = indices[1]
                entities.append(
                    {
                        "entity": original_label,
                        "score": np.average(confidences[idx : idx + len(subtree)]),
                        "index": idx,
                        "word": original_string,
                        "start": entity_start_position,
                        "end": entity_end_position,
                    }
                )
                assert (
                    text[entity_start_position:entity_end_position] == original_string
                )
            idx += len(subtree)

            # Update the current character position
            # We add the length of the original string + 1 (for the space)
        else:
            token, pos = subtree
            # If it's not a named entity, we still need to update the character
            # position
            idx += 1

    return entities


def realign(
    text_sentence, out_label_preds, softmax_scores, tokenizer, reverted_label_map
):
    preds_list, words_list, confidence_list = [], [], []
    word_ids = tokenizer(text_sentence, is_split_into_words=True).word_ids()
    for idx, word in enumerate(text_sentence):
        beginning_index = word_ids.index(idx)
        try:
            preds_list.append(reverted_label_map[out_label_preds[beginning_index]])
            confidence_list.append(max(softmax_scores[beginning_index]))
        except Exception as ex:  # the sentence was longer then max_length
            preds_list.append("O")
            confidence_list.append(0.0)
        words_list.append(word)

    return words_list, preds_list, confidence_list


class MultitaskTokenClassificationPipeline(Pipeline):
    def __init__(self, model, tokenizer, label_map, **kwargs):
        super().__init__(model=model, tokenizer=tokenizer, **kwargs)
        self.label_map = label_map
        self.id2label = {
            task: {id_: label for label, id_ in labels.items()}
            for task, labels in label_map.items()
        }

    def _sanitize_parameters(self, **kwargs):
        # Add any additional parameter handling if necessary
        return kwargs, {}, {}

    def preprocess(self, text, **kwargs):
        tokenized_inputs = self.tokenizer(
            text, padding="max_length", truncation=True, max_length=512
        )

        text_sentence = tokenize(text)
        return tokenized_inputs, text_sentence, text

    def _forward(self, inputs):
        inputs, text_sentence, text = inputs
        input_ids = torch.tensor([inputs["input_ids"]], dtype=torch.long).to(
            self.model.device
        )
        attention_mask = torch.tensor([inputs["attention_mask"]], dtype=torch.long).to(
            self.model.device
        )
        with torch.no_grad():
            outputs = self.model(input_ids, attention_mask)
        return outputs, text_sentence, text

    def postprocess(self, outputs, **kwargs):
        """
        Postprocess the outputs of the model
        :param outputs:
        :param kwargs:
        :return:
        """
        tokens_result, text_sentence, text = outputs

        predictions = {}
        confidence_scores = {}
        for task, logits in tokens_result.logits.items():
            predictions[task] = torch.argmax(logits, dim=-1).tolist()
            confidence_scores[task] = F.softmax(logits, dim=-1).tolist()

        decoded_predictions = {}
        for task, preds in predictions.items():
            decoded_predictions[task] = [
                [self.id2label[task][label] for label in seq] for seq in preds
            ]
        entities = {}
        for task, preds in predictions.items():
            words_list, preds_list, confidence_list = realign(
                text_sentence,
                preds[0],
                confidence_scores[task][0],
                self.tokenizer,
                self.id2label[task],
            )

            entities[task] = get_entities(words_list, preds_list, confidence_list, text)

        return entities