emanuelaboros's picture
Initial commit including model and configuration
e5b1d73
raw
history blame
5.44 kB
import os
import shutil
import argparse
from transformers import (
AutoTokenizer,
AutoConfig,
AutoModelForTokenClassification,
BertConfig,
)
from huggingface_hub import HfApi, Repository
# import json
from .configuration_stacked import ImpressoConfig
from .modeling_stacked import ExtendedMultitaskModelForTokenClassification
import subprocess
def get_latest_checkpoint(checkpoint_dir):
checkpoints = [
d
for d in os.listdir(checkpoint_dir)
if os.path.isdir(os.path.join(checkpoint_dir, d))
and d.startswith("checkpoint-")
]
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[-1]), reverse=True)
return os.path.join(checkpoint_dir, checkpoints[0])
def get_info(label_map):
num_token_labels_dict = {task: len(labels) for task, labels in label_map.items()}
return num_token_labels_dict
def push_model_to_hub(checkpoint_dir, repo_name, script_path):
checkpoint_path = get_latest_checkpoint(checkpoint_dir)
config = ImpressoConfig.from_pretrained(checkpoint_path)
config.pretrained_config = AutoConfig.from_pretrained(config.name_or_path)
config.save_pretrained("stacked_bert")
config = ImpressoConfig.from_pretrained("stacked_bert")
model = ExtendedMultitaskModelForTokenClassification.from_pretrained(
checkpoint_path, config=config
)
tokenizer = AutoTokenizer.from_pretrained(checkpoint_path)
local_repo_path = "./repo"
repo_url = HfApi().create_repo(repo_id=repo_name, exist_ok=True)
repo = Repository(local_dir=local_repo_path, clone_from=repo_url)
try:
# Try to pull the latest changes from the remote repository using subprocess
subprocess.run(["git", "pull"], check=True, cwd=local_repo_path)
except subprocess.CalledProcessError as e:
# If fast-forward is not possible, reset the local branch to match the remote branch
subprocess.run(
["git", "reset", "--hard", "origin/main"],
check=True,
cwd=local_repo_path,
)
# Copy all Python files to the local repository directory
current_dir = os.path.dirname(os.path.abspath(__file__))
for filename in os.listdir(current_dir):
if filename.endswith(".py") or filename.endswith(".json"):
shutil.copy(
os.path.join(current_dir, filename),
os.path.join(local_repo_path, filename),
)
ImpressoConfig.register_for_auto_class()
AutoConfig.register("stacked_bert", ImpressoConfig)
AutoModelForTokenClassification.register(
ImpressoConfig, ExtendedMultitaskModelForTokenClassification
)
ExtendedMultitaskModelForTokenClassification.register_for_auto_class(
"AutoModelForTokenClassification"
)
model.save_pretrained(local_repo_path)
tokenizer.save_pretrained(local_repo_path)
# Add, commit and push the changes to the repository
subprocess.run(["git", "add", "."], check=True, cwd=local_repo_path)
subprocess.run(
["git", "commit", "-m", "Initial commit including model and configuration"],
check=True,
cwd=local_repo_path,
)
subprocess.run(["git", "push"], check=True, cwd=local_repo_path)
# Push the model to the hub (this includes the README template)
model.push_to_hub(repo_name)
tokenizer.push_to_hub(repo_name)
print(f"Model and repo pushed to: {repo_url}")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Push NER model to Hugging Face Hub")
parser.add_argument(
"--model_type",
type=str,
required=True,
help="Type of the model (e.g., stacked-bert)",
)
parser.add_argument(
"--language",
type=str,
required=True,
help="Language of the model (e.g., multilingual)",
)
parser.add_argument(
"--checkpoint_dir",
type=str,
required=True,
help="Directory containing checkpoint folders",
)
parser.add_argument(
"--script_path", type=str, required=True, help="Path to the models.py script"
)
args = parser.parse_args()
repo_name = f"impresso-project/ner-{args.model_type}-{args.language}"
push_model_to_hub(args.checkpoint_dir, repo_name, args.script_path)
# PIPELINE_REGISTRY.register_pipeline(
# "generic-ner",
# pipeline_class=MultitaskTokenClassificationPipeline,
# pt_model=ExtendedMultitaskModelForTokenClassification,
# )
# model.config.custom_pipelines = {
# "generic-ner": {
# "impl": "generic_ner.MultitaskTokenClassificationPipeline",
# "pt": ["ExtendedMultitaskModelForTokenClassification"],
# "tf": [],
# }
# }
# classifier = pipeline(
# "generic-ner", model=model, tokenizer=tokenizer, label_map=label_map
# )
# from pprint import pprint
#
# pprint(
# classifier(
# "1. Le public est averti que Charlotte née Bourgoin, femme-de Joseph Digiez, et Maurice Bourgoin, enfant mineur représenté par le sieur Jaques Charles Gicot son curateur, ont été admis par arrêt du Conseil d'Etat du 5 décembre 1797, à solliciter une renonciation générale et absolue aux biens et aux dettes présentes et futures de Jean-Baptiste Bourgoin leur père."
# )
# )
# repo.push_to_hub(commit_message="Initial commit of the trained NER model with code")