Update README.md
Browse files
README.md
CHANGED
@@ -10,13 +10,6 @@ tags:
|
|
10 |
|
11 |
The **Impresso NER model** is based on the stacked Transformer architecture published in [CoNLL 2020](https://aclanthology.org/2020.conll-1.35/) trained on the Impresso HIPE-2020 portion of the [HIPE-2022 dataset](https://github.com/hipe-eval/HIPE-2022-data). It recognizes entity types such as person, location, and organization while supporting the complete [HIPE typology](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-hipe2020.md), including coarse and fine-grained entity types as well as components like names, titles, and roles. Additionally, the NER model's backbone ([dbmdz/bert-medium-historic-multilingual-cased](https://huggingface.co/dbmdz/bert-medium-historic-multilingual-cased)) was trained on various European historical datasets, giving it a broader language capability. This training included data from the Europeana and British Library collections across multiple languages: German, French, English, Finnish, and Swedish. Due to this multilingual backbone, the NER model may also recognize entities in other languages beyond French and German.
|
12 |
|
13 |
-
|
14 |
-
## Model Details
|
15 |
-
|
16 |
-
|
17 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
18 |
-
dbmdz/bert-medium-historic-multilingual-cased
|
19 |
-
|
20 |
#### How to use
|
21 |
|
22 |
You can use this model with Transformers *pipeline* for NER.
|
@@ -47,15 +40,15 @@ print(entities)
|
|
47 |
|
48 |
```
|
49 |
[
|
50 |
-
{'type': 'time.date.abs', 'confidence_ner': 85.0, '
|
51 |
-
{'type': 'loc.adm.nat', 'confidence_ner': 90.75, '
|
52 |
-
{'type': 'loc', 'confidence_ner': 75.45, '
|
53 |
-
{'type': 'pers.ind', 'confidence_ner': 85.27, '
|
54 |
-
{'type': 'loc.adm.town', 'confidence_ner': 30.59, '
|
55 |
-
{'type': 'loc.adm.town', 'confidence_ner': 94.46, '
|
56 |
-
{'type': 'pers.ind', 'confidence_ner': 96.1, '
|
57 |
-
{'type': 'loc.adm.nat', 'confidence_ner': 49.35, '
|
58 |
-
{'type': 'loc.adm.nat', 'confidence_ner': 24.18, '
|
59 |
]
|
60 |
```
|
61 |
|
|
|
10 |
|
11 |
The **Impresso NER model** is based on the stacked Transformer architecture published in [CoNLL 2020](https://aclanthology.org/2020.conll-1.35/) trained on the Impresso HIPE-2020 portion of the [HIPE-2022 dataset](https://github.com/hipe-eval/HIPE-2022-data). It recognizes entity types such as person, location, and organization while supporting the complete [HIPE typology](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-hipe2020.md), including coarse and fine-grained entity types as well as components like names, titles, and roles. Additionally, the NER model's backbone ([dbmdz/bert-medium-historic-multilingual-cased](https://huggingface.co/dbmdz/bert-medium-historic-multilingual-cased)) was trained on various European historical datasets, giving it a broader language capability. This training included data from the Europeana and British Library collections across multiple languages: German, French, English, Finnish, and Swedish. Due to this multilingual backbone, the NER model may also recognize entities in other languages beyond French and German.
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
#### How to use
|
14 |
|
15 |
You can use this model with Transformers *pipeline* for NER.
|
|
|
40 |
|
41 |
```
|
42 |
[
|
43 |
+
{'type': 'time.date.abs', 'confidence_ner': 85.0, 'surface': "En l'an 1348", 'lOffset': 0, 'rOffset': 12},
|
44 |
+
{'type': 'loc.adm.nat', 'confidence_ner': 90.75, 'surface': 'Europe', 'lOffset': 69, 'rOffset': 75},
|
45 |
+
{'type': 'loc', 'confidence_ner': 75.45, 'surface': 'Royaume de France', 'lOffset': 80, 'rOffset': 97},
|
46 |
+
{'type': 'pers.ind', 'confidence_ner': 85.27, 'surface': 'roi Philippe VI', 'lOffset': 181, 'rOffset': 196, 'title': 'roi', 'name': 'roi Philippe VI'},
|
47 |
+
{'type': 'loc.adm.town', 'confidence_ner': 30.59, 'surface': 'Louvre', 'lOffset': 210, 'rOffset': 216},
|
48 |
+
{'type': 'loc.adm.town', 'confidence_ner': 94.46, 'surface': 'Paris', 'lOffset': 266, 'rOffset': 271},
|
49 |
+
{'type': 'pers.ind', 'confidence_ner': 96.1, 'surface': 'chancelier Guillaume de Nogaret', 'lOffset': 350, 'rOffset': 381, 'title': 'chancelier', 'name': 'chancelier Guillaume de Nogaret'},
|
50 |
+
{'type': 'loc.adm.nat', 'confidence_ner': 49.35, 'surface': 'Royaume', 'lOffset': 80, 'rOffset': 87},
|
51 |
+
{'type': 'loc.adm.nat', 'confidence_ner': 24.18, 'surface': 'France', 'lOffset': 91, 'rOffset': 97}
|
52 |
]
|
53 |
```
|
54 |
|